Ngo Ha-Duong, Mukhopadhyay Biswajit, Mackowiak Piotr, Kröhnert Kevin, Ehrmann Oswin, Lang Klaus-Dieter
Center of Microperipheric Technologies, Fraunhofer Institute IZM, Berlin 13355, Germany.
University of Applied Sciences, FB I, Microsystems Engineering, Berlin 12459, Germany.
Micromachines (Basel). 2016 Oct 20;7(10):193. doi: 10.3390/mi7100193.
In this paper, we present and discuss our new WSi⁻WSiN⁻Pt metallization scheme for SiC-based microsystems for applications in harsh environments. Stoichiometric material WSi was selected as contact material for SiC. The diffusion barrier material WSiN was deposited from the same target as the contact material in order to limit the number of different chemical elements in the scheme. Our scheme was kept as simple as possible regarding the number of layers and chemical elements. Our scheme shows very good long-term stability and suitability for SiC-based microsystems. The experimental evaluation concept used here includes a combination of physical, electrical, and mechanical analysis techniques. This combined advance is necessary since modern physical analysis techniques still offer only limited sensitivity for detecting minimal changes in the metallization scheme.
在本文中,我们展示并讨论了一种用于恶劣环境应用的基于碳化硅(SiC)的微系统的新型WSi⁻WSiN⁻Pt金属化方案。化学计量比的材料WSi被选作SiC的接触材料。扩散阻挡层材料WSiN与接触材料由同一靶材沉积而成,以限制该方案中不同化学元素的数量。就层数和化学元素而言,我们的方案尽可能保持简单。我们的方案对基于SiC的微系统显示出非常好的长期稳定性和适用性。这里使用的实验评估概念包括物理、电气和机械分析技术的组合。这种综合进展是必要的,因为现代物理分析技术在检测金属化方案中的微小变化时,灵敏度仍然有限。