Suppr超能文献

转发还是不转发:理解心血管推文的哪些特征影响其转发。

To Retweet or Not to Retweet: Understanding What Features of Cardiovascular Tweets Influence Their Retransmission.

机构信息

a Bob Schieffer College of Communication , Texas Christian University , Fort Worth , TX , USA.

b Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.

出版信息

J Health Commun. 2018;23(12):1026-1035. doi: 10.1080/10810730.2018.1540671. Epub 2018 Nov 7.

Abstract

Twitter is one of the largest social networking sites (SNSs) in the world, yet little is known about what cardiovascular health related tweets go viral and what characteristics are associated with retransmission. The current study aims to identify a function of the observable characteristics of cardiovascular tweets, including characteristics of the source, content, and style that predict the retransmission of these tweets. We identified a random sample of 1,251 tweets associated with CVD originating from the United States between 2009 and 2015. Automated coding was conducted on the affect values of the tweets as well as the presence/absence of any URL, mention of another user, question mark, exclamation mark, and hashtag. We hand-coded the tweets' novelty, utility, theme, and source. The count of retweets was positively predicted by message utility, health organization source, and mention of user handle, but negatively predicted by the presence of URL and nonhealth organization source. Regarding theme, compared to the tweets focusing on risk factor, tweets on treatment and management predicted fewer retweets while supportive tweets predicted more retweets. These findings suggest opportunities for harnessing Twitter to better disseminate cardiovascular educational and supportive information on SNSs.

摘要

推特是世界上最大的社交媒体网站之一,但对于哪些与心血管健康相关的推文会传播开来,以及哪些特征与转发有关,人们知之甚少。本研究旨在确定可观察到的心血管推文特征的一个功能,包括来源、内容和风格特征,这些特征可以预测这些推文的转发。我们从 2009 年至 2015 年期间从美国确定了一个与 CVD 相关的 1251 条随机推特样本。对推特的情感价值以及是否存在 URL、提及其他用户、问号、感叹号和话题标签进行了自动编码。我们对手写编码的推文新颖性、实用性、主题和来源进行了编码。转发的数量与信息的实用性、健康组织来源以及用户的提及呈正相关,但与 URL 的存在和非健康组织来源呈负相关。就主题而言,与关注风险因素的推文相比,关于治疗和管理的推文的转发量较少,而支持性推文的转发量较多。这些发现表明,有机会利用推特在社交媒体上更好地传播心血管教育和支持性信息。

相似文献

1
To Retweet or Not to Retweet: Understanding What Features of Cardiovascular Tweets Influence Their Retransmission.
J Health Commun. 2018;23(12):1026-1035. doi: 10.1080/10810730.2018.1540671. Epub 2018 Nov 7.
2
#CDCGrandRounds and #VitalSigns: A Twitter Analysis.
Ann Glob Health. 2018 Nov 5;84(4):710-716. doi: 10.9204/aogh.2381.
6
Tweeting as Health Communication: Health Organizations' Use of Twitter for Health Promotion and Public Engagement.
J Health Commun. 2016;21(2):188-98. doi: 10.1080/10810730.2015.1058435. Epub 2015 Dec 30.
8
Improving the quality and impact of public health social media activity in Scotland during 2016: #ScotPublicHealth.
J Public Health (Oxf). 2018 Jun 1;40(2):e189-e194. doi: 10.1093/pubmed/fdx066.
9
Utilizing Twitter data for analysis of chemotherapy.
Int J Med Inform. 2018 Dec;120:92-100. doi: 10.1016/j.ijmedinf.2018.10.002. Epub 2018 Oct 9.
10
World Pneumonia Day 2011-2016: Twitter contents and retweets.
Int Health. 2019 Jul 1;11(4):297-305. doi: 10.1093/inthealth/ihy087.

引用本文的文献

1
Education Research: Making a Tweetorial Fly: Features of Educational Social Media Posts Associated With High Sharing and Engagement.
Neurol Educ. 2024 Oct 31;3(4):00. doi: 10.1212/NE9.0000000000200160. eCollection 2024 Dec.
4
Social Media Posts on Statins: What Can We Learn About Patient Experiences and Perspectives?
J Am Heart Assoc. 2024 Apr 2;13(7):e033992. doi: 10.1161/JAHA.124.033992. Epub 2024 Mar 27.
5
Belief-consistent information is most shared despite being the least surprising.
Sci Rep. 2024 Mar 13;14(1):6109. doi: 10.1038/s41598-024-56086-2.
6
A multidimensional comparative study of help-seeking messages on Weibo under different stages of COVID-19 pandemic in China.
Front Public Health. 2024 Feb 14;12:1320146. doi: 10.3389/fpubh.2024.1320146. eCollection 2024.
7
Interaction between official institutions and influential users of rumor control in online social networks.
Front Psychol. 2022 Aug 2;13:937296. doi: 10.3389/fpsyg.2022.937296. eCollection 2022.
8
10
What makes an online help-seeking message go far during the COVID-19 crisis in mainland China? A multilevel regression analysis.
Digit Health. 2022 Mar 18;8:20552076221085061. doi: 10.1177/20552076221085061. eCollection 2022 Jan-Dec.

本文引用的文献

1
How Is Marijuana Vaping Portrayed on YouTube? Content, Features, Popularity and Retransmission of Vaping Marijuana YouTube Videos.
J Health Commun. 2018;23(4):360-369. doi: 10.1080/10810730.2018.1448488. Epub 2018 Mar 13.
2
Language of ADHD in Adults on Social Media.
J Atten Disord. 2019 Oct;23(12):1475-1485. doi: 10.1177/1087054717738083. Epub 2017 Nov 8.
3
Are Social Networking Sites Making Health Behavior Change Interventions More Effective? A Meta-Analytic Review.
J Health Commun. 2017 Mar;22(3):223-233. doi: 10.1080/10810730.2016.1271065. Epub 2017 Feb 16.
4
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association.
Circulation. 2017 Mar 7;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485. Epub 2017 Jan 25.
5
Twitter as a Potential Data Source for Cardiovascular Disease Research.
JAMA Cardiol. 2016 Dec 1;1(9):1032-1036. doi: 10.1001/jamacardio.2016.3029.
6
An Academic Healthcare Twitter Account: The Mayo Clinic Experience.
Cyberpsychol Behav Soc Netw. 2016 Jun;19(6):360-6. doi: 10.1089/cyber.2015.0607.
7
Predicting Retweeting Behavior on Breast Cancer Social Networks: Network and Content Characteristics.
J Health Commun. 2016;21(4):479-86. doi: 10.1080/10810730.2015.1103326. Epub 2016 Mar 23.
8
Attracting Views and Going Viral: How Message Features and News-Sharing Channels Affect Health News Diffusion.
J Commun. 2015 Jun 1;65(3):512-534. doi: 10.1111/jcom.12160. Epub 2015 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验