School of Business, Guilin University of Electronic Technology, Guilin, Guangxi, China.
Front Public Health. 2024 Feb 14;12:1320146. doi: 10.3389/fpubh.2024.1320146. eCollection 2024.
During the COVID-19 pandemic, people posted help-seeking messages on Weibo, a mainstream social media in China, to solve practical problems. As viruses, policies, and perceptions have all changed, help-seeking behavior on Weibo has been shown to evolve in this paper.
We compare and analyze the help-seeking messages from three dimensions: content categories, time distribution, and retweeting influencing factors. First, we crawled the help-seeking messages from Weibo, and successively used CNN and xlm-roberta-large models for text classification to analyze the changes of help-seeking messages in different stages from the content categories dimension. Subsequently, we studied the time distribution of help-seeking messages and calculated the time lag using TLCC algorithm. Finally, we analyze the changes of the retweeting influencing factors of help-seeking messages in different stages by negative binomial regression.
(1) Help-seekers in different periods have different emphasis on content. (2) There is a significant correlation between new daily help-seeking messages and new confirmed cases in the middle stage (1/1/2022-5/20/2022), with a 16-day time lag, but there is no correlation in the latter stage (12/10/2022-2/25/2023). (3) In all the periods, pictures or videos, and the length of the text have a significant positive effect on the number of retweets of help-seeking messages, but other factors do not have exactly the same effect on the retweeting volume.
This paper demonstrates the evolution of help-seeking messages during different stages of the COVID-19 pandemic in three dimensions: content categories, time distribution, and retweeting influencing factors, which are worthy of reference for decision-makers and help-seekers, as well as provide thinking for subsequent studies.
在 COVID-19 大流行期间,人们在中国主流社交媒体微博上发布求助信息,以解决实际问题。随着病毒、政策和认知的变化,微博上的求助行为在本文中显示出了演变。
我们从内容类别、时间分布和转发影响因素三个维度比较和分析求助信息。首先,我们从微博上抓取求助信息,先后使用 CNN 和 xlm-roberta-large 模型进行文本分类,从内容类别维度分析不同阶段求助信息的变化。随后,我们研究了求助信息的时间分布,并使用 TLCC 算法计算时间滞后。最后,通过负二项回归分析不同阶段求助信息转发影响因素的变化。
(1)不同时期的求助者对内容的侧重点不同。(2)在中期(2022 年 1 月 1 日-2022 年 5 月 20 日),新的每日求助信息与新确诊病例之间存在显著相关性,存在 16 天的时间滞后,但在后期(2022 年 12 月 10 日-2023 年 2 月 25 日)则没有相关性。(3)在所有时期,图片或视频以及文本长度对求助信息的转发数量有显著的正向影响,但其他因素对转发量的影响并不完全相同。
本文从内容类别、时间分布和转发影响因素三个维度展示了 COVID-19 大流行不同阶段求助信息的演变,对决策者和求助者具有参考价值,并为后续研究提供了思路。