Suppr超能文献

水痘-带状疱疹病毒对人单核细胞和巨噬细胞的感染和功能调节。

Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus.

机构信息

Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia.

Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia

出版信息

J Virol. 2019 Jan 17;93(3). doi: 10.1128/JVI.01887-18. Print 2019 Feb 1.

Abstract

Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes. Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.

摘要

水痘带状疱疹病毒(VZV)与原发性感染期间的病毒血症有关,据推测这是由于循环免疫细胞感染所致。虽然已经证明 VZV 能够感染循环免疫细胞的许多不同亚群,如 T 细胞、树突状细胞和 NK 细胞,但人们对 VZV 与单核细胞之间的相互作用了解较少。在这里,我们证明血液来源的人类单核细胞允许 VZV 复制。VZV 感染的单核细胞表现出 VZV 基因表达的每个时间类,这通过免疫荧光染色得到证实。通过扫描电子显微镜观察到 VZV 病毒粒子在细胞表面上,并且在 VZV 感染的单核细胞的核中观察到病毒核衣壳。此外,VZV 感染的单核细胞能够将感染性病毒转移到人类成纤维细胞。受感染的单核细胞显示出葡聚糖介导的胞吞作用受损,并且细胞表面免疫表型分析显示 CD14、HLA-DR、CD11b 和巨噬细胞集落刺激因子(M-CSF)受体下调。分析 VZV 感染对 M-CSF 刺激的单核细胞向巨噬细胞分化的影响表明细胞活力丧失,表明 VZV 感染的单核细胞无法分化为有活力的巨噬细胞。相比之下,在暴露于 VZV 之前从单核细胞分化的巨噬细胞对感染高度允许。这项研究定义了这些髓样细胞类型对生产性 VZV 感染的易感性,并确定了 VZV 感染单核细胞的功能障碍。原发性 VZV 感染导致病毒在宿主中广泛传播。病毒运输已知直接受循环中易感免疫细胞的影响。此外,VZV 感染免疫细胞会导致用于控制感染和限制传播的抗病毒机制减弱。在这里,我们提供证据表明,在循环中高度丰富的人类单核细胞允许生产性 VZV 感染。此外,单核细胞衍生的巨噬细胞也对 VZV 感染高度允许,尽管 VZV 感染的单核细胞无法分化为巨噬细胞。探索 VZV 与允许性免疫细胞(如人类单核细胞和巨噬细胞)之间的关系,阐明了新的免疫逃避策略,并进一步深入了解 VZV 对免疫系统的控制。

相似文献

1
Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus.
J Virol. 2019 Jan 17;93(3). doi: 10.1128/JVI.01887-18. Print 2019 Feb 1.
2
Varicella zoster virus productively infects human natural killer cells and manipulates phenotype.
PLoS Pathog. 2018 Apr 30;14(4):e1006999. doi: 10.1371/journal.ppat.1006999. eCollection 2018 Apr.
4
Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection.
J Virol. 2017 Dec 14;92(1). doi: 10.1128/JVI.01108-17. Print 2018 Jan 1.
5
Suppression of the host antiviral response by non-infectious varicella zoster virus extracellular vesicles.
J Virol. 2024 Aug 20;98(8):e0084824. doi: 10.1128/jvi.00848-24. Epub 2024 Jul 25.
7
Infection of human peripheral blood mononuclear cells by varicella-zoster virus.
Intervirology. 1982;18(1-2):56-65. doi: 10.1159/000149304.
9
Regulation of Siglec-7-mediated varicella-zoster virus infection of primary monocytes by cis-ligands.
Biochem Biophys Res Commun. 2022 Jul 12;613:41-46. doi: 10.1016/j.bbrc.2022.04.111. Epub 2022 Apr 26.

引用本文的文献

1
Herpes simplex virus type 1 impairs mucosal-associated invariant T cells.
mBio. 2025 May 14;16(5):e0388724. doi: 10.1128/mbio.03887-24. Epub 2025 Mar 26.
2
Understanding the Mode of Action of Several Active Ingredients from the Micro-Immunotherapy Medicine 2LZONA.
J Inflamm Res. 2025 Mar 21;18:4267-4290. doi: 10.2147/JIR.S498930. eCollection 2025.
3
Varicella Zoster Virus disrupts MAIT cell polyfunctional effector responses.
PLoS Pathog. 2024 Aug 7;20(8):e1012372. doi: 10.1371/journal.ppat.1012372. eCollection 2024 Aug.
4
Varicella Zoster Virus Downregulates Expression of the Nonclassical Antigen Presentation Molecule CD1d.
J Infect Dis. 2024 Aug 16;230(2):e416-e426. doi: 10.1093/infdis/jiad512.
5
Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions.
Microbiol Mol Biol Rev. 2023 Sep 26;87(3):e0011622. doi: 10.1128/mmbr.00116-22. Epub 2023 Jun 24.
7
Differential immunophenotype of circulating monocytes from pregnant women in response to viral ligands.
BMC Pregnancy Childbirth. 2023 May 6;23(1):323. doi: 10.1186/s12884-023-05562-0.
8
Varicella Zoster Virus infects mucosal associated Invariant T cells.
Front Immunol. 2023 Mar 17;14:1121714. doi: 10.3389/fimmu.2023.1121714. eCollection 2023.
9
Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting.
Front Med (Lausanne). 2022 Sep 27;9:997305. doi: 10.3389/fmed.2022.997305. eCollection 2022.

本文引用的文献

1
Varicella zoster virus productively infects human natural killer cells and manipulates phenotype.
PLoS Pathog. 2018 Apr 30;14(4):e1006999. doi: 10.1371/journal.ppat.1006999. eCollection 2018 Apr.
3
The fate and lifespan of human monocyte subsets in steady state and systemic inflammation.
J Exp Med. 2017 Jul 3;214(7):1913-1923. doi: 10.1084/jem.20170355. Epub 2017 Jun 12.
4
Phenotype, function, and differentiation potential of human monocyte subsets.
PLoS One. 2017 Apr 26;12(4):e0176460. doi: 10.1371/journal.pone.0176460. eCollection 2017.
5
Monocyte differentiation and antigen-presenting functions.
Nat Rev Immunol. 2017 Jun;17(6):349-362. doi: 10.1038/nri.2017.28. Epub 2017 Apr 24.
6
CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18.
PLoS One. 2016 Sep 22;11(9):e0163120. doi: 10.1371/journal.pone.0163120. eCollection 2016.
7
In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2403-12. doi: 10.1073/pnas.1522575113. Epub 2016 Apr 12.
9
Monocyte homeostasis and the plasticity of inflammatory monocytes.
Cell Immunol. 2014 Sep-Oct;291(1-2):22-31. doi: 10.1016/j.cellimm.2014.05.010. Epub 2014 Jun 11.
10
Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes.
Immunity. 2013 Sep 19;39(3):599-610. doi: 10.1016/j.immuni.2013.08.007. Epub 2013 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验