Paschke Kurt, Agüero José, Gebauer Paulina, Díaz Fernando, Mascaró Maite, López-Ripoll Estefany, Re Denisse, Caamal-Monsreal Claudia, Tremblay Nelly, Pörtner Hans-Otto, Rosas Carlos
Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile.
Front Physiol. 2018 Oct 22;9:1438. doi: 10.3389/fphys.2018.01438. eCollection 2018.
Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR-LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures -5-10% below CT max) and TIMR min (at temperatures +5-10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (), and sedentary clownfish (), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate.
考虑到水槽游泳法或追逐法在估算最大代谢率以及久坐或行动迟缓的水生变温动物的有氧代谢范围(AS)时存在不足,我们提出了一种新颖的概念方法,即通过使用能诱导高代谢率(HMR)和低代谢率(LMR)的高低两种非致死温度来刺激生物体的代谢活动,从而获得高代谢率。该方法被定义为TIMR:温度诱导代谢率,旨在基于温度诱导的代谢范围获得有氧功率预算,这可能反映热代谢范围(TMS = HMR - LMR)。在使用之前,研究人员应了解动物的临界热最大值(CT max)和最小值(CT min),并计算温度TIMR最大值(在比CT max低5 - 10%的温度下)和TIMR最小值(在比CT min高5 - 10%的温度下),或者选择能引发比常规条件下更高和更低代谢率的高低两种非致死温度。进行了两组实验。第一组实验比较了水槽游泳开放式呼吸测定法和TIMR方案,使用了耐力游泳者(笛鲷),并使其在不同温度下驯化。结果表明,无论使用何种方法以及代谢反应的大小如何,最大代谢预算与驯化温度之间都观察到了相似的关系,这表明TIMR方法能够识别TMS。第二组实验使用TIMR和追逐法评估了驯化温度对笛鲷、半久坐的黄尾(黄尾鰤)和久坐的小丑鱼的影响。两种方法在笛鲷和黄尾鱼中产生了相似的最大代谢率,但在小丑鱼中差异明显。在小丑鱼中,TIMR方法导致的TMS显著高于追逐法,这表明追逐法可能无法充分利用久坐物种的有氧功率预算。因此,TIMR方法提供了一种替代方法,用于估算不同驯化条件下高低代谢活动之间的差异,尽管它不等同于AS,但可能允许对与久坐物种相关的TMS进行标准化估算,而对于久坐物种,通过最大游泳来测量AS是不合适的。