Ronzheimer Stefanie, Warmbold Bianca, Arnhold Christian, Bremer Erhard
Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
Front Microbiol. 2018 Oct 24;9:2536. doi: 10.3389/fmicb.2018.02536. eCollection 2018.
Accumulation of compatible solutes is a common stress response of microorganisms challenged by high osmolarity; it can be achieved either through synthesis or import. These processes have been intensively studied in , where systems for the production of the compatible solutes proline and glycine betaine have been identified, and in which five transporters for osmostress protectants (Opu) have been characterized. Glycine betaine synthesis relies on the import of choline via the substrate-restricted OpuB system and the promiscuous OpuC transporter and its subsequent oxidation by the GbsAB enzymes. Transcription of the and operons is under control of the MarR-type regulator GbsR, which acts as an intracellular choline-responsive repressor. Modeling studies using the X-ray structure of the Mj223 protein from as the template suggest that GbsR is a homo-dimer with an N-terminal DNA-reading head and C-terminal dimerization domain; a flexible linker connects these two domains. In the vicinity of the linker region, an aromatic cage is predicted as the inducer-binding site, whose envisioned architecture resembles that present in choline and glycine betaine substrate-binding proteins of ABC transporters. We used bioinformatics to assess the phylogenomics of GbsR-type proteins and found that they are widely distributed among and . Alignments of GbsR proteins and analysis of the genetic context of the corresponding structural genes allowed their assignment into four sub-groups. In one of these sub-groups of GbsR-type proteins, -type genes are associated either with OpuA-, OpuB-, or OpuC-type osmostress protectants uptake systems. We focus here on GbsR-type proteins, named OpuAR by us, that control the expression of -type gene clusters. Using such a system from the marine bacterium , we show that OpuAR acts as a repressor of transcription, where several compatible solutes (e.g., choline, glycine betaine, proline betaine) serve as its inducers. Site-directed mutagenesis studies allowed a rational improvement of the putative inducer-binding site in OpuAR with respect to the affinity of choline and glycine betaine binding. Collectively, our data characterize GbsR-/OpuAR-type proteins as an extended sub-group within the MarR-superfamily of transcriptional regulators and identify a novel type of substrate-inducible import system for osmostress protectants.
相容性溶质的积累是微生物在高渗透压挑战下常见的应激反应;这可以通过合成或导入来实现。这些过程在[具体研究对象]中得到了深入研究,在那里已经鉴定出了产生相容性溶质脯氨酸和甘氨酸甜菜碱的系统,并且已经对五种渗透压应激保护剂转运蛋白(Opu)进行了表征。甘氨酸甜菜碱的合成依赖于通过底物受限的OpuB系统和混杂的OpuC转运蛋白导入胆碱,以及随后由GbsAB酶进行的氧化。[相关基因]操纵子的转录受MarR型调节因子GbsR的控制,GbsR作为细胞内胆碱响应阻遏物发挥作用。以[具体微生物]的Mj223蛋白的X射线结构为模板进行的建模研究表明,GbsR是一种同型二聚体,具有N端DNA读取头和C端二聚化结构域;一个柔性连接子连接这两个结构域。在连接子区域附近,预测有一个芳香笼作为诱导剂结合位点,其设想的结构类似于ABC转运蛋白的胆碱和甘氨酸甜菜碱底物结合蛋白中的结构。我们使用生物信息学来评估GbsR型蛋白的系统发育基因组学,发现它们广泛分布于[相关微生物类群]中。对GbsR蛋白的比对以及对相应结构基因的遗传背景分析,使它们被分为四个亚组。在这些GbsR型蛋白亚组之一中,[相关基因]型基因与OpuA -、OpuB -或OpuC型渗透压应激保护剂摄取系统相关。我们在此聚焦于我们命名为OpuAR的GbsR型蛋白,其控制[相关基因]型基因簇的表达。使用来自海洋细菌[具体细菌]的这样一个系统,我们表明OpuAR作为[相关基因]转录的阻遏物,其中几种相容性溶质(例如胆碱、甘氨酸甜菜碱、脯氨酸甜菜碱)作为其诱导剂。定点诱变研究使得能够就胆碱和甘氨酸甜菜碱结合的亲和力对OpuAR中假定的诱导剂结合位点进行合理改进。总体而言,我们的数据将GbsR - /OpuAR型蛋白表征为转录调节因子MarR超家族中的一个扩展亚组,并鉴定出一种新型的渗透压应激保护剂底物诱导性导入系统。