Suppr超能文献

基于疾病严重程度的韩国肺癌相关健康状态效用权重评估。

Disease severity-based evaluation of utility weights for lung cancer-related health states in Korea.

机构信息

Department of Nursing, Pyeongtaek University, Pyeongtaek, Gyeonggi, South Korea.

Department of Preventive Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea.

出版信息

BMC Cancer. 2018 Nov 8;18(1):1081. doi: 10.1186/s12885-018-4960-y.

Abstract

BACKGROUND

Utility weight, a measure of health-related quality of life, is used in disease burden measurements and economic evaluations. In this study, we used the visual analogue scale (VAS) and standard gamble (SG) method to determine the utility weights of lung cancer health states in South Korea from a societal perspective.

METHODS

Six hypothetical health states for lung cancer or a related health state reflective of disease severity were developed: 1) Stage I, 2) Stage II, 3) Stage IIIa, 4) Stage IIIB, 5) Stage IV, and 6) Pulmonary nodule. The description of each health state description was divided into four parts: diagnosis, symptoms, treatment, and progression and prognosis. A total of 515 representative adult Korean participants used a VAS and SG to evaluate these six health states via face-to-face computer-assisted interviews. The means, standard deviations, and median utility weights of the six health states were estimated by valuation method.

RESULTS

The two valuation methods of the scenarios yielded the same mean utility rankings. Pulmonary nodule received the highest rank (VAS, 0.66 and SG, 0.83), whereas Stage 4 was assigned the lowest rank (VAS, 0.09 and SG, 0.31). For all health states, the mean utility weights calculated using the SG were greater than those calculated using the VAS. The differences between the utility weights obtained using the two valuation methods ranged from 0.14 (Stage I) to 0.22 (Stage IV). The two approaches tended to yield larger differences for more severe stages.

CONCLUSIONS

This study determined utilities for squamous cell lung cancer that will be useful for estimating the burden of lung cancer and for conducting economic evaluations of lung cancer interventions.

摘要

背景

效用权重是衡量健康相关生活质量的一种指标,用于疾病负担测量和经济评估。本研究采用视觉模拟评分法(VAS)和标准赌博法(SG),从社会角度确定韩国肺癌健康状况的效用权重。

方法

我们构建了 6 种肺癌或相关健康状况的假想健康状态,以反映疾病严重程度:1)I 期,2)II 期,3)IIIa 期,4)IIIB 期,5)IV 期,和 6)肺结节。每个健康状态的描述分为四部分:诊断、症状、治疗和进展与预后。共有 515 名代表性的韩国成年参与者通过面对面的计算机辅助访谈,使用 VAS 和 SG 对这 6 种健康状态进行评估。通过估值法对 6 种健康状态的均值、标准差和中位数效用权重进行估计。

结果

两种估值方法得出的情景均值效用排名相同。肺结节的排名最高(VAS,0.66;SG,0.83),而 4 期的排名最低(VAS,0.09;SG,0.31)。对于所有健康状态,使用 SG 计算得出的平均效用权重均大于使用 VAS 计算得出的权重。两种估值方法得出的效用权重之间的差异范围为 0.14(I 期)至 0.22(IV 期)。两种方法在评估更严重的阶段时往往会产生更大的差异。

结论

本研究确定了鳞状细胞肺癌的效用,这将有助于估计肺癌负担,并对肺癌干预措施进行经济评估。

相似文献

7
Estimation of Utility Weights for Prostate-related Health States in Korea.韩国前列腺相关健康状况效用值的评估。
J Prev Med Public Health. 2022 May;55(3):243-252. doi: 10.3961/jpmph.21.426. Epub 2022 May 4.
8
Comparison of Health State Utility Measures in Patients With Head and Neck Cancer.头颈癌患者健康状态效用测量的比较
JAMA Otolaryngol Head Neck Surg. 2015 Aug;141(8):696-703. doi: 10.1001/jamaoto.2015.1314.
9
Estimation of health state utilities in breast cancer.乳腺癌健康状态效用的评估。
Patient Prefer Adherence. 2017 Mar 14;11:531-536. doi: 10.2147/PPA.S129856. eCollection 2017.
10
Health state utility scores in advanced non-small cell lung cancer.晚期非小细胞肺癌的健康状态效用评分
Lung Cancer. 2008 Dec;62(3):374-80. doi: 10.1016/j.lungcan.2008.03.019. Epub 2008 May 8.

本文引用的文献

2
Estimation of health state utilities in breast cancer.乳腺癌健康状态效用的评估。
Patient Prefer Adherence. 2017 Mar 14;11:531-536. doi: 10.2147/PPA.S129856. eCollection 2017.
8
Measuring the burden of chronic diseases in Korea in 2007.测量 2007 年韩国慢性病的负担。
Public Health. 2013 Sep;127(9):806-13. doi: 10.1016/j.puhe.2012.12.024. Epub 2013 Feb 20.
10
A review and meta-analysis of utility values for lung cancer.肺癌效用值的回顾与荟萃分析。
Med Decis Making. 2010 Nov-Dec;30(6):685-93. doi: 10.1177/0272989X10369004. Epub 2010 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验