Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, D-14195 Berlin, Germany.
Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2018 Oct 26;121(17):170502. doi: 10.1103/PhysRevLett.121.170502.
Characterizing quantum processes is a key task in the development of quantum technologies, especially at the noisy intermediate scale of today's devices. One method for characterizing processes is randomized benchmarking, which is robust against state preparation and measurement errors and can be used to benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity-a figure of merit characterizing the coherence of a process.
对量子过程进行特征描述是量子技术发展的关键任务,特别是在当今设备的嘈杂中级规模下。对过程进行特征描述的一种方法是随机基准测试,它对状态制备和测量误差具有鲁棒性,并且可以用于基准测试 Clifford 门。压缩感知技术以最佳的资源效率基本上实现了量子通道的全层析成像。在这封信中,我们表明可以将这两种方法的优点结合起来。对于多量子比特幺正门的特征描述,我们提供了一种严格保证的实用重建方法,该方法在相对于随机 Clifford 幺正的平均门保真度的数量上基本上具有最优的性能。此外,对于一般的幺正量子通道,我们提供了一个明确的幺正 2-设计展开,即使在这种情况下,也可以进行实际的和有保证的重建。作为一个附带的结果,我们获得了一个新的关于幺正性的统计解释,这是一个描述过程相干性的度量标准。