Suppr超能文献

从少数平均门保真度中恢复量子门。

Recovering Quantum Gates from Few Average Gate Fidelities.

机构信息

Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, D-14195 Berlin, Germany.

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Phys Rev Lett. 2018 Oct 26;121(17):170502. doi: 10.1103/PhysRevLett.121.170502.

Abstract

Characterizing quantum processes is a key task in the development of quantum technologies, especially at the noisy intermediate scale of today's devices. One method for characterizing processes is randomized benchmarking, which is robust against state preparation and measurement errors and can be used to benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity-a figure of merit characterizing the coherence of a process.

摘要

对量子过程进行特征描述是量子技术发展的关键任务,特别是在当今设备的嘈杂中级规模下。对过程进行特征描述的一种方法是随机基准测试,它对状态制备和测量误差具有鲁棒性,并且可以用于基准测试 Clifford 门。压缩感知技术以最佳的资源效率基本上实现了量子通道的全层析成像。在这封信中,我们表明可以将这两种方法的优点结合起来。对于多量子比特幺正门的特征描述,我们提供了一种严格保证的实用重建方法,该方法在相对于随机 Clifford 幺正的平均门保真度的数量上基本上具有最优的性能。此外,对于一般的幺正量子通道,我们提供了一个明确的幺正 2-设计展开,即使在这种情况下,也可以进行实际的和有保证的重建。作为一个附带的结果,我们获得了一个新的关于幺正性的统计解释,这是一个描述过程相干性的度量标准。

相似文献

1
Recovering Quantum Gates from Few Average Gate Fidelities.
Phys Rev Lett. 2018 Oct 26;121(17):170502. doi: 10.1103/PhysRevLett.121.170502.
2
Randomized benchmarking of multiqubit gates.
Phys Rev Lett. 2012 Jun 29;108(26):260503. doi: 10.1103/PhysRevLett.108.260503. Epub 2012 Jun 26.
3
Fidelity benchmarks for two-qubit gates in silicon.
Nature. 2019 May;569(7757):532-536. doi: 10.1038/s41586-019-1197-0. Epub 2019 May 13.
4
Randomized Benchmarking for Individual Quantum Gates.
Phys Rev Lett. 2019 Aug 9;123(6):060501. doi: 10.1103/PhysRevLett.123.060501.
5
Benchmarking universal quantum gates via channel spectrum.
Nat Commun. 2023 Sep 21;14(1):5880. doi: 10.1038/s41467-023-41598-8.
6
Implementation of controlled unitary gates and its application in a remote-controlled quantum gate.
Opt Express. 2024 Nov 4;32(23):42031-42039. doi: 10.1364/OE.540199.
7
Efficient measurement of quantum gate error by interleaved randomized benchmarking.
Phys Rev Lett. 2012 Aug 24;109(8):080505. doi: 10.1103/PhysRevLett.109.080505.
8
Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor.
Phys Rev Lett. 2015 Apr 10;114(14):140505. doi: 10.1103/PhysRevLett.114.140505. Epub 2015 Apr 8.
9
Direct Randomized Benchmarking for Multiqubit Devices.
Phys Rev Lett. 2019 Jul 19;123(3):030503. doi: 10.1103/PhysRevLett.123.030503.
10
Error Mitigation for Universal Gates on Encoded Qubits.
Phys Rev Lett. 2021 Nov 12;127(20):200505. doi: 10.1103/PhysRevLett.127.200505.

引用本文的文献

1
Benchmarking Quantum Gates and Circuits.
Chem Rev. 2025 Jun 25;125(12):5745-5775. doi: 10.1021/acs.chemrev.4c00870. Epub 2025 May 5.
2
Fermionic Reduced Density Low-Rank Matrix Completion, Noise Filtering, and Measurement Reduction in Quantum Simulations.
J Chem Theory Comput. 2023 Dec 26;19(24):9151-9160. doi: 10.1021/acs.jctc.3c00851. Epub 2023 Dec 14.
3
Shadow estimation of gate-set properties from random sequences.
Nat Commun. 2023 Aug 19;14(1):5039. doi: 10.1038/s41467-023-39382-9.
4
Quantum process tomography with unsupervised learning and tensor networks.
Nat Commun. 2023 May 19;14(1):2858. doi: 10.1038/s41467-023-38332-9.
5
Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates.
Commun Math Phys. 2023;397(3):995-1041. doi: 10.1007/s00220-022-04507-6. Epub 2022 Nov 12.
6
Isospectral Twirling and Quantum Chaos.
Entropy (Basel). 2021 Aug 19;23(8):1073. doi: 10.3390/e23081073.
7
Bootstrapping quantum process tomography via a perturbative ansatz.
Nat Commun. 2020 Feb 27;11(1):1084. doi: 10.1038/s41467-020-14873-1.

本文引用的文献

1
Experimental quantum compressed sensing for a seven-qubit system.
Nat Commun. 2017 May 17;8:15305. doi: 10.1038/ncomms15305.
2
Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit.
Phys Rev Lett. 2016 Dec 23;117(26):260501. doi: 10.1103/PhysRevLett.117.260501. Epub 2016 Dec 20.
3
Comparing Experiments to the Fault-Tolerance Threshold.
Phys Rev Lett. 2016 Oct 21;117(17):170502. doi: 10.1103/PhysRevLett.117.170502.
4
Practical characterization of quantum devices without tomography.
Phys Rev Lett. 2011 Nov 18;107(21):210404. doi: 10.1103/PhysRevLett.107.210404. Epub 2011 Nov 16.
5
Direct fidelity estimation from few Pauli measurements.
Phys Rev Lett. 2011 Jun 10;106(23):230501. doi: 10.1103/PhysRevLett.106.230501. Epub 2011 Jun 8.
6
Scalable and robust randomized benchmarking of quantum processes.
Phys Rev Lett. 2011 May 6;106(18):180504. doi: 10.1103/PhysRevLett.106.180504.
7
Efficient measurement of quantum dynamics via compressive sensing.
Phys Rev Lett. 2011 Mar 11;106(10):100401. doi: 10.1103/PhysRevLett.106.100401. Epub 2011 Mar 7.
8
Efficient quantum state tomography.
Nat Commun. 2010;1:149. doi: 10.1038/ncomms1147.
9
Quantum state tomography via compressed sensing.
Phys Rev Lett. 2010 Oct 8;105(15):150401. doi: 10.1103/PhysRevLett.105.150401. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验