Govia L C G, Ribeill G J, Ristè D, Ware M, Krovi H
Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA, 02138, USA.
Nat Commun. 2020 Feb 27;11(1):1084. doi: 10.1038/s41467-020-14873-1.
Quantum process tomography has become increasingly critical as the need grows for robust verification and validation of candidate quantum processors, since it plays a key role in both performance assessment and debugging. However, as these processors grow in size, standard process tomography becomes an almost impossible task. Here, we present an approach for efficient quantum process tomography that uses a physically motivated ansatz for an unknown quantum process. Our ansatz bootstraps to an effective description for an unknown process on a multi-qubit processor from pairwise two-qubit tomographic data. Further, our approach can inherit insensitivity to system preparation and measurement error from the two-qubit tomography scheme. We benchmark our approach using numerical simulation of noisy three-qubit gates, and show that it produces highly accurate characterizations of quantum processes. Further, we demonstrate our approach experimentally on a superconducting quantum processor, building three-qubit gate reconstructions from two-qubit tomographic data.
随着对候选量子处理器进行可靠验证和确认的需求不断增长,量子过程层析成像变得越来越重要,因为它在性能评估和调试中都起着关键作用。然而,随着这些处理器规模的扩大,标准的过程层析成像几乎成为一项不可能完成的任务。在此,我们提出一种高效量子过程层析成像方法,该方法对未知量子过程采用基于物理动机的假设。我们的假设从成对的两比特层析数据出发,逐步引导出对多比特处理器上未知过程的有效描述。此外,我们的方法可以继承两比特层析成像方案对系统制备和测量误差的不敏感性。我们使用有噪声的三比特门的数值模拟对我们的方法进行基准测试,并表明它能对量子过程进行高度精确的表征。此外,我们在超导量子处理器上通过实验证明了我们的方法,从两比特层析数据构建三比特门的重构。