Proctor Timothy J, Carignan-Dugas Arnaud, Rudinger Kenneth, Nielsen Erik, Blume-Kohout Robin, Young Kevin
Quantum Performance Laboratory, Sandia National Laboratories, Livermore, California 94550, USA.
Institute for Quantum Computing and the Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Phys Rev Lett. 2019 Jul 19;123(3):030503. doi: 10.1103/PhysRevLett.123.030503.
Benchmarking methods that can be adapted to multiqubit systems are essential for assessing the overall or "holistic" performance of nascent quantum processors. The current industry standard is Clifford randomized benchmarking (RB), which measures a single error rate that quantifies overall performance. But, scaling Clifford RB to many qubits is surprisingly hard. It has only been performed on one, two, and three qubits as of this writing. This reflects a fundamental inefficiency in Clifford RB: the n-qubit Clifford gates at its core have to be compiled into large circuits over the one- and two-qubit gates native to a device. As n grows, the quality of these Clifford gates quickly degrades, making Clifford RB impractical at relatively low n. In this Letter, we propose a direct RB protocol that mostly avoids compiling. Instead, it uses random circuits over the native gates in a device, which are seeded by an initial layer of Clifford-like randomization. We demonstrate this protocol experimentally on two to five qubits using the publicly available ibmqx5. We believe this to be the greatest number of qubits holistically benchmarked, and this was achieved on a freely available device without any special tuning up. Our protocol retains the simplicity and convenient properties of Clifford RB: it estimates an error rate from an exponential decay. But, it can be extended to processors with more qubits-we present simulations on 10+ qubits-and it reports a more directly informative and flexible error rate than the one reported by Clifford RB. We show how to use this flexibility to measure separate error rates for distinct sets of gates, and we use this method to estimate the average error rate of a set of cnot gates.
适用于多量子比特系统的基准测试方法对于评估新生量子处理器的整体或“整体”性能至关重要。当前的行业标准是克利福德随机基准测试(RB),它测量一个量化整体性能的单一错误率。但是,将克利福德RB扩展到多个量子比特出奇地困难。截至撰写本文时,它仅在一、二和三个量子比特上进行过。这反映了克利福德RB的一个基本低效率:其核心的n量子比特克利福德门必须被编译成基于设备原生的单量子比特和双量子比特门的大电路。随着n的增加,这些克利福德门的质量迅速下降,使得克利福德RB在相对较低的n时就不切实际。在本信函中,我们提出了一种直接的RB协议,该协议大多避免编译。相反,它使用设备原生门的随机电路,这些电路由初始的类似克利福德随机化层作为种子。我们使用公开可用的ibmqx5在二至五个量子比特上通过实验证明了该协议。我们相信这是整体基准测试的最大量子比特数,并且这是在无需任何特殊调试的免费可用设备上实现的。我们的协议保留了克利福德RB的简单性和便利特性:它从指数衰减估计错误率。但是,它可以扩展到具有更多量子比特的处理器——我们展示了在10多个量子比特上的模拟——并且它报告的错误率比克利福德RB报告的错误率更直接地提供信息且更灵活。我们展示了如何利用这种灵活性来测量不同门集的单独错误率,并且我们使用这种方法来估计一组受控非门的平均错误率。