Suppr超能文献

进一步验证基于生理学的肾脏模型:尿液流量和尿液 pH 值对肾清除率影响的可预测性。

Towards Further Verification of Physiologically-Based Kidney Models: Predictability of the Effects of Urine-Flow and Urine-pH on Renal Clearance.

机构信息

Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (T.M., D.S., A.S.D., A.G., A.R.-H.); Research Laboratories for Development, Shionogi & Co., Ltd., Osaka, Japan (T.M.); and Simcyp Limited (A Certara Company), Sheffield, United Kingdom (A.R.-H.).

Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (T.M., D.S., A.S.D., A.G., A.R.-H.); Research Laboratories for Development, Shionogi & Co., Ltd., Osaka, Japan (T.M.); and Simcyp Limited (A Certara Company), Sheffield, United Kingdom (A.R.-H.)

出版信息

J Pharmacol Exp Ther. 2019 Feb;368(2):157-168. doi: 10.1124/jpet.118.251413. Epub 2018 Nov 9.

Abstract

In vitro-in vivo extrapolation (IVIVE) of renal excretory clearance (CL) using the physiologically based kidney models can provide mechanistic insight into the interplay of multiple processes occurring in the renal tubule; however, the ability of these models to capture quantitatively the impact of perturbed conditions (e.g., urine flow, urine pH changes) on CL has not been fully evaluated. In this work, we aimed to assess the predictability of the effect of urine flow and urine pH on CL and tubular drug concentrations (selected examples). Passive diffusion clearance across the nephron tubule membrane was scaled from in vitro human epithelial cell line Caco-2 permeability data by nephron tubular surface area to predict the fraction reabsorbed and the CL of caffeine, chloramphenicol, creatinine, dextroamphetamine, nicotine, sulfamethoxazole, and theophylline. CL values predicted using mechanistic kidney model at a urinary pH of 6.2 and 7.4 resulted in prediction bias of 2.87- and 3.62-fold, respectively. Model simulations captured urine flow-dependent CL, albeit with minor underprediction of the observed magnitude of change. The relationship between drug solubility, urine flow, and urine pH, illustrated in simulated intratubular concentrations of acyclovir and sulfamethoxazole, agreed with clinical data on tubular precipitation and crystal-induced acute kidney injury. This study represents the first systematic evaluation of the ability of the mechanistic kidney model to capture the impact of urine flow and urine pH on CL and drug tubular concentrations with the aim of facilitating refinement of IVIVE-based mechanistic prediction of renal excretion.

摘要

利用基于生理的肾脏模型进行体外-体内外推(IVIVE)来估算肾脏排泄清除率(CL),可以深入了解发生在肾小管中的多种过程的相互作用;然而,这些模型在定量捕捉被扰乱的条件(例如尿液流量、尿液 pH 值变化)对 CL 的影响方面的能力尚未得到充分评估。在这项工作中,我们旨在评估尿液流量和尿液 pH 值对 CL 和肾小管药物浓度(选择的示例)的影响的可预测性。跨肾单位管腔的被动扩散清除率通过肾单位管腔表面积从体外人上皮细胞系 Caco-2 渗透性数据进行缩放,以预测被重吸收的分数和咖啡因、氯霉素、肌酸酐、右旋苯丙胺、尼古丁、磺胺甲恶唑和茶碱的 CL。在尿液 pH 值为 6.2 和 7.4 时使用机制肾脏模型预测的 CL 值分别导致预测偏差为 2.87 倍和 3.62 倍。尽管对观察到的变化幅度的预测存在较小偏差,但模型模拟仍捕获了与尿液流量相关的 CL。药物溶解度、尿液流量和尿液 pH 值之间的关系,如图acyclovir 和磺胺甲恶唑在模拟的管腔内浓度所示,与关于肾小管沉淀和晶体诱导的急性肾损伤的临床数据一致。本研究代表了对机制肾脏模型捕捉尿液流量和尿液 pH 值对 CL 和药物管腔内浓度的影响的能力的首次系统评估,旨在促进基于 IVIVE 的肾脏排泄机制预测的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验