Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA.
Steinmann Institute for Geology, Mineralogy, and Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany.
Nat Commun. 2018 Nov 9;9(1):4741. doi: 10.1038/s41467-018-07013-3.
Vertebrate hard tissues consist of mineral crystallites within a proteinaceous scaffold that normally degrades post-mortem. Here we show, however, that decalcification of Mesozoic hard tissues preserved in oxidative settings releases brownish stained extracellular matrix, cells, blood vessels, and nerve projections. Raman Microspectroscopy shows that these fossil soft tissues are a product of diagenetic transformation to Advanced Glycoxidation and Lipoxidation End Products, a class of N-heterocyclic polymers generated via oxidative crosslinking of proteinaceous scaffolds. Hard tissues in reducing environments, in contrast, lack soft tissue preservation. Comparison of fossil soft tissues with modern and experimentally matured samples reveals how proteinaceous tissues undergo diagenesis and explains biases in their preservation in the rock record. This provides a target, focused on oxidative depositional environments, for finding cellular-to-subcellular soft tissue morphology in fossils and validates its use in phylogenetic and other evolutionary studies.
脊椎动物的硬组织由蛋白质支架内的矿物质晶须组成,这些晶须通常在死后降解。然而,我们在这里表明,保存在氧化环境中的中生代硬组织的脱钙作用会释放出棕褐色染色的细胞外基质、细胞、血管和神经突起。拉曼微光谱分析表明,这些化石软组织是一种经过特殊处理的高级糖基化和脂质氧化终产物的产物,这是一类 N-杂环聚合物,通过蛋白质支架的氧化交联生成。相比之下,在还原环境中的硬组织则缺乏软组织保存。将化石软组织与现代和实验成熟的样本进行比较,揭示了蛋白质组织如何经历成岩作用,并解释了它们在岩石记录中保存的偏见。这为在化石中寻找细胞到亚细胞的软组织形态提供了一个目标,重点关注氧化沉积环境,并验证了其在系统发育和其他进化研究中的应用。