Hu Qitao, Huang Ting, Zhu Aili, Anglés Angélica, Abdelghany Osman, Ahmed Alaa, Fernández-Remolar David C
State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China.
CNSA Macau Center for Space Exploration and Science, Macau 999078, China.
Int J Mol Sci. 2025 Jun 21;26(13):5978. doi: 10.3390/ijms26135978.
Understanding the mechanisms of protein preservation in extreme environments is essential for identifying potential molecular biosignatures on Mars. In this study, we investigated five sabkha sedimentary samples from the Abu Dhabi coast, spanning from the present day to ~11,000 years before present (BP), to assess how mineralogy and environmental conditions influence long-term protein stability. Using LC-MS/MS and direct Data-independent Acquisition (DIA) proteomic analysis, we identified 722 protein groups and 1300 peptides, revealing a strong correlation between preservation and matrix composition. Carbonate- and silica-rich samples favored the retention of DNA-binding and metal-coordinating proteins via mineral-protein interactions, while halite- and gypsum-dominated facies showed lower recovery due to extreme salinity and reduced biomass input. Functional profiling revealed a shift from metabolic dominance in modern samples to genome maintenance strategies in ancient ones, indicating microbial adaptation to prolonged environmental stress. Contrary to expectations, some ancient samples preserved large, multi-domain proteins, suggesting that early mineral encapsulation can stabilize structurally complex biomolecules over millennial timescales. Taxonomic reconstruction based on preserved proteins showed broad archaeal diversity, including Thaumarchaeota and thermophilic lineages, expanding our understanding of microbial ecology in hypersaline systems. These findings highlight sabkhas as valuable analogs for Martian evaporitic environments and suggest that carbonate-silica matrices on Mars may offer optimal conditions for preserving ancient molecular traces of life.
了解极端环境中蛋白质的保存机制对于识别火星上潜在的分子生物特征至关重要。在本研究中,我们调查了来自阿布扎比海岸的五个盐沼沉积样本,时间跨度从现代到距今约11,000年(BP),以评估矿物学和环境条件如何影响蛋白质的长期稳定性。使用液相色谱-串联质谱(LC-MS/MS)和直接非数据依赖采集(DIA)蛋白质组学分析,我们鉴定出722个蛋白质组和1300个肽段,揭示了保存与基质组成之间的强相关性。富含碳酸盐和二氧化硅的样本通过矿物-蛋白质相互作用有利于DNA结合蛋白和金属配位蛋白的保留,而以石盐和石膏为主的相由于极端盐度和生物量输入减少而回收率较低。功能分析表明,从现代样本中的代谢主导地位转变为古代样本中的基因组维护策略,这表明微生物适应了长期的环境压力。与预期相反,一些古代样本保存了大型多结构域蛋白质,这表明早期的矿物包裹可以在千年时间尺度上稳定结构复杂的生物分子。基于保存的蛋白质进行的分类重建显示出广泛的古菌多样性,包括奇古菌门和嗜热谱系,扩展了我们对高盐系统中微生物生态学的理解。这些发现突出了盐沼作为火星蒸发环境的有价值类比,并表明火星上的碳酸盐-二氧化硅基质可能为保存古代生命分子痕迹提供最佳条件。