Suppr超能文献

在球形红杆菌 LH2 天线中工程化 B800 细菌叶绿素结合位点特异性。

Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna.

机构信息

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.

Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA.

出版信息

Biochim Biophys Acta Bioenerg. 2019 Mar 1;1860(3):209-223. doi: 10.1016/j.bbabio.2018.11.008. Epub 2018 Nov 9.

Abstract

The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.

摘要

紫细菌球形红杆菌的集光 2 复合物(LH2)是一种高效的光收集天线,允许在广泛的光强度下生长。为了扩展这个天线复合物的光谱范围,我们首先使用一系列竞争测定法来测量非天然色素 3-乙酰基叶绿素(Chl)a、Chl d、Chl f 或细菌叶绿素(BChl)b 取代 LH2 中 B800 结合位点中原生 BChl a 的能力。然后,我们调整了 B800 位点并系统地评估了非天然色素的结合情况。我们发现 LH2 β多肽的 Arg 通过与天然和非天然色素的 3-乙酰基形成氢键,在结合特异性方面发挥着至关重要的作用。通过瞬态吸收和稳态荧光光谱法检查了含有一系列(B)Chls 的重组 LH2 复合物。尽管能量转移从 Chl a 到 B850 BChl a 的速度减慢了 10 倍至约 6 ps,但仍然非常高效。我们测量了 Chl d(3.5 ps)和 Chl f(2.7 ps)的更快能量转移时间常数,它们的吸收最大值与 Chl a 相比发生了红移。与天然 BChl a 相比发生红移的 BChl b 给出了极快的(≤0.1 ps)转移。这些结果表明,修饰的 LH2 复合物与体内工程化的(B)Chl 生物合成途径相结合,具有在保持高效率的同时获得增加的光谱范围的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eae/6358721/e7867f69ab6d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验