Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA.
Biochim Biophys Acta Bioenerg. 2019 Mar 1;1860(3):209-223. doi: 10.1016/j.bbabio.2018.11.008. Epub 2018 Nov 9.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.
紫细菌球形红杆菌的集光 2 复合物(LH2)是一种高效的光收集天线,允许在广泛的光强度下生长。为了扩展这个天线复合物的光谱范围,我们首先使用一系列竞争测定法来测量非天然色素 3-乙酰基叶绿素(Chl)a、Chl d、Chl f 或细菌叶绿素(BChl)b 取代 LH2 中 B800 结合位点中原生 BChl a 的能力。然后,我们调整了 B800 位点并系统地评估了非天然色素的结合情况。我们发现 LH2 β多肽的 Arg 通过与天然和非天然色素的 3-乙酰基形成氢键,在结合特异性方面发挥着至关重要的作用。通过瞬态吸收和稳态荧光光谱法检查了含有一系列(B)Chls 的重组 LH2 复合物。尽管能量转移从 Chl a 到 B850 BChl a 的速度减慢了 10 倍至约 6 ps,但仍然非常高效。我们测量了 Chl d(3.5 ps)和 Chl f(2.7 ps)的更快能量转移时间常数,它们的吸收最大值与 Chl a 相比发生了红移。与天然 BChl a 相比发生红移的 BChl b 给出了极快的(≤0.1 ps)转移。这些结果表明,修饰的 LH2 复合物与体内工程化的(B)Chl 生物合成途径相结合,具有在保持高效率的同时获得增加的光谱范围的潜力。