Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):927-938. doi: 10.1016/j.bbabio.2017.08.009. Epub 2017 Aug 18.
The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.
嗜热菌(Tch.) tepidum 的反应中心-捕光 1(RC-LH1)复合物具有独特的钙离子结合位点,在钙离子存在下,该结合位点增强了 LH1 的热稳定性,并将 LH1 的吸收红移至 880nm 至 915nm。嗜热光合细菌(如红杆菌(Rba.)sphaeroides)的 LH1 天线不具有这种特性。我们通过用嗜热菌 tepidum 的序列逐渐修饰天然的 LH1 多肽,将钙离子结合引入 Rba. sphaeroides 的 LH1 天线。我们表明,从 Tch. tepidum 的 LH1α和β获得 C 端结构域足以激活钙离子结合,并且随着掺入的 Tch. tepidum 序列的比例增加,红移的程度增加。然而,用 Tch. tepidum 的 LH1 多肽完全取代 LH1 多肽会导致核心复合物组装错误。从我们最成功的突变体中分离出的α和β多肽在体外与 BChl a 重组形成 LH1 型复合物,该复合物被钙离子稳定 3 倍。此外,类胡萝卜素特异性从在 Rba. sphaeroides 中发现的球藻黄素改变为在 Tch. tepidum 中发现的螺旋藻黄素,后者增强了 LH1 的体外形成。这些数据表明,Tch. tepidum 的 LH1α/β C 端结构域可以自主发挥作用,并能够将钙离子诱导的构象变化传递给与外来天线复合物其余部分结合的 BChls。因此,使用精心设计的过程,可以将外来天线复合物的元件(如钙离子结合和吸收的蓝/红转换)导入红杆菌 sphaeroides。