Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
J Cell Physiol. 2019 Jul;234(7):10324-10335. doi: 10.1002/jcp.27700. Epub 2018 Nov 11.
Renal cancer is a common urogenital system malignance. Novel biomarkers could provide more and more critical information on tumor features and patients' prognosis. Here, we performed an integrated analysis on the discovery set and established a three-gene signature to predict the prognosis for clear cell renal cell carcinoma (ccRCC). By constructing a LASSO Cox regression model, a 3-messenger RNA (3-mRNA) signature was identified. Based on the 3-mRNA signature, we divided patients into high- and low-risk groups, and validated this by using three other data sets. In the discovery set, this signature could successfully distinguish between the high- and low-risk patients (hazard ratio (HR), 2.152; 95% confidence interval (CI),1.509-3.069; p < 0.0001). Analysis of internal and two external validation sets yielded consistent results (internal: HR, 2.824; 95% CI, 1.601-4.98; p < 0.001; GSE29609: HR, 3.002; 95% CI, 1.113-8.094; p = 0.031; E-MTAB-3267: HR, 2.357; 95% CI, 1.243-4.468; p = 0.006). Time-dependent receiver operating characteristic (ROC) analysis indicated that the area under the ROC curve at 5 years was 0.66 both in the discovery and internal validation set, while the two external validation sets also suggested good performance of the 3-mRNA signature. Besides that, a nomogram was built and the calibration plots and decision curve analysis indicated the good performance and clinical utility of the nomogram. In conclusion, this 3-mRNA classifier proved to be a useful tool for prognostic evaluation and could facilitate personalized management of ccRCC patients.
肾癌是一种常见的泌尿生殖系统恶性肿瘤。新的生物标志物可以提供越来越多关于肿瘤特征和患者预后的关键信息。在这里,我们对发现集进行了综合分析,并建立了一个三基因标志物来预测透明细胞肾细胞癌(ccRCC)的预后。通过构建 LASSO Cox 回归模型,确定了一个 3 信使 RNA(3-mRNA)标志物。基于 3-mRNA 标志物,我们将患者分为高风险和低风险组,并使用另外三个数据集进行了验证。在发现集中,该标志物能够成功地区分高风险和低风险患者(风险比(HR),2.152;95%置信区间(CI),1.509-3.069;p<0.0001)。对内部和两个外部验证集的分析得出了一致的结果(内部:HR,2.824;95%CI,1.601-4.98;p<0.001;GSE29609:HR,3.002;95%CI,1.113-8.094;p=0.031;E-MTAB-3267:HR,2.357;95%CI,1.243-4.468;p=0.006)。时间依赖性接收者操作特征(ROC)分析表明,该 3-mRNA 标志物在发现集和内部验证集中的 5 年 AUC 值分别为 0.66,而两个外部验证集也表明该 3-mRNA 标志物具有良好的性能。此外,还构建了一个列线图,校准图和决策曲线分析表明了该列线图的良好性能和临床实用性。总之,该 3-mRNA 分类器被证明是一种用于预后评估的有用工具,可以促进 ccRCC 患者的个性化管理。