Men Kuo, Boimel Pamela, Janopaul-Naylor James, Cheng Chingyun, Zhong Haoyu, Huang Mi, Geng Huaizhi, Fan Yong, Plastaras John P, Ben-Josef Edgar, Xiao Ying
University of Pennsylvania, Philadelphia, PA, USA.
J Appl Clin Med Phys. 2019 Jan;20(1):110-117. doi: 10.1002/acm2.12494. Epub 2018 Nov 12.
Convolutional neural networks (CNN) have greatly improved medical image segmentation. A robust model requires training data can represent the entire dataset. One of the differing characteristics comes from variability in patient positioning (prone or supine) for radiotherapy. In this study, we investigated the effect of position orientation on segmentation using CNN.
Data of 100 patients (50 in supine and 50 in prone) with rectal cancer were collected for this study. We designed three sets of experiments for comparison: (a) segmentation using the model trained with data from the same orientation; (b) segmentation using the model trained with data from the opposite orientation; (c) segmentation using the model trained with data from both orientations. We performed fivefold cross-validation. The performance was evaluated on segmentation of the clinical target volume (CTV), bladder, and femurs with Dice similarity coefficient (DSC) and Hausdorff distance (HD).
Compared with models trained on cases positioned in the same orientation, the models trained with cases positioned in the opposite orientation performed significantly worse (P < 0.05) on CTV and bladder segmentation, but had comparable accuracy for femurs (P > 0.05). The average DSC values were 0.74 vs 0.84, 0.85 vs 0.88, and 0.91 vs 0.91 for CTV, bladder, and femurs, respectively. The corresponding HD values (mm) were 16.6 vs 14.6, 8.4 vs 8.1, and 6.3 vs 6.3, respectively. The models trained with data from both orientations have comparable accuracy (P > 0.05), with average DSC of 0.84, 0.88, and 0.91 and HD of 14.4, 8.1, and 6.3, respectively.
Orientation affects the accuracy for CTV and bladder, but has negligible effect on the femurs. The model trained from data combining both orientations performs as well as a model trained with data from the same orientation for all the organs. These observations can offer guidance on the choice of training data for accurate segmentation.
卷积神经网络(CNN)极大地改善了医学图像分割。一个强大的模型需要训练数据能够代表整个数据集。其中一个不同的特征来自于放射治疗中患者体位(俯卧或仰卧)的变异性。在本研究中,我们调查了体位方向对使用CNN进行分割的影响。
本研究收集了100例直肠癌患者的数据(50例仰卧位和50例俯卧位)。我们设计了三组实验进行比较:(a)使用来自相同方向数据训练的模型进行分割;(b)使用来自相反方向数据训练的模型进行分割;(c)使用来自两个方向数据训练的模型进行分割。我们进行了五折交叉验证。使用骰子相似系数(DSC)和豪斯多夫距离(HD)对临床靶体积(CTV)、膀胱和股骨的分割性能进行评估。
与在相同方向体位的病例上训练的模型相比,在相反方向体位的病例上训练的模型在CTV和膀胱分割上表现明显更差(P < 0.05),但在股骨分割上具有相当的准确性(P > 0.05)。CTV、膀胱和股骨的平均DSC值分别为0.74对0.84、0.85对0.88和0.91对0.91。相应的HD值(mm)分别为16.6对14.6、8.4对8.1和6.3对6.3。使用来自两个方向数据训练的模型具有相当的准确性(P > 0.05),平均DSC分别为0.84、0.88和0.91,HD分别为14.4、8.1和6.3。
体位方向影响CTV和膀胱分割的准确性,但对股骨的影响可忽略不计。从两个方向的数据组合训练的模型在所有器官上的表现与从相同方向的数据训练的模型一样好。这些观察结果可为准确分割的训练数据选择提供指导。