Suppr超能文献

基于纹理记忆增强深度补丁的图像修复

Texture Memory-Augmented Deep Patch-Based Image Inpainting.

作者信息

Xu Rui, Guo Minghao, Wang Jiaqi, Li Xiaoxiao, Zhou Bolei, Loy Chen Change

出版信息

IEEE Trans Image Process. 2021;30:9112-9124. doi: 10.1109/TIP.2021.3122930. Epub 2021 Nov 4.

Abstract

Patch-based methods and deep networks have been employed to tackle image inpainting problem, with their own strengths and weaknesses. Patch-based methods are capable of restoring a missing region with high-quality texture through searching nearest neighbor patches from the unmasked regions. However, these methods bring problematic contents when recovering large missing regions. Deep networks, on the other hand, show promising results in completing large regions. Nonetheless, the results often lack faithful and sharp details that resemble the surrounding area. By bringing together the best of both paradigms, we propose a new deep inpainting framework where texture generation is guided by a texture memory of patch samples extracted from unmasked regions. The framework has a novel design that allows texture memory retrieval to be trained end-to-end with the deep inpainting network. In addition, we introduce a patch distribution loss to encourage high-quality patch synthesis. The proposed method shows superior performance both qualitatively and quantitatively on three challenging image benchmarks, i.e., Places, CelebA-HQ, and Paris Street-View datasets (Code will be made publicly available in https://github.com/open-mmlab/mmediting).

摘要

基于补丁的方法和深度网络已被用于解决图像修复问题,它们各有优缺点。基于补丁的方法能够通过从未遮挡区域搜索最近邻补丁来高质量地恢复缺失区域的纹理。然而,这些方法在恢复大的缺失区域时会引入有问题的内容。另一方面,深度网络在完成大区域修复方面显示出有前景的结果。尽管如此,结果往往缺乏与周围区域相似的逼真和清晰的细节。通过结合这两种范式的优点,我们提出了一种新的深度修复框架,其中纹理生成由从未遮挡区域提取的补丁样本的纹理记忆引导。该框架有一个新颖的设计,允许纹理记忆检索与深度修复网络进行端到端训练。此外,我们引入了补丁分布损失来鼓励高质量的补丁合成。所提出的方法在三个具有挑战性的图像基准数据集,即Places、CelebA-HQ和巴黎街景数据集上,在定性和定量方面都表现出优越的性能(代码将在https://github.com/open-mmlab/mmediting上公开提供)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验