Suppr超能文献

DeepDiff:基于深度学习的组蛋白修饰差异基因表达预测方法。

DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications.

机构信息

Department of Computer Science, University of Virginia, Charlottesville, VA, USA.

出版信息

Bioinformatics. 2018 Sep 1;34(17):i891-i900. doi: 10.1093/bioinformatics/bty612.

Abstract

MOTIVATION

Computational methods that predict differential gene expression from histone modification signals are highly desirable for understanding how histone modifications control the functional heterogeneity of cells through influencing differential gene regulation. Recent studies either failed to capture combinatorial effects on differential prediction or primarily only focused on cell type-specific analysis. In this paper we develop a novel attention-based deep learning architecture, DeepDiff, that provides a unified and end-to-end solution to model and to interpret how dependencies among histone modifications control the differential patterns of gene regulation. DeepDiff uses a hierarchy of multiple Long Short-Term Memory (LSTM) modules to encode the spatial structure of input signals and to model how various histone modifications cooperate automatically. We introduce and train two levels of attention jointly with the target prediction, enabling DeepDiff to attend differentially to relevant modifications and to locate important genome positions for each modification. Additionally, DeepDiff introduces a novel deep-learning based multi-task formulation to use the cell-type-specific gene expression predictions as auxiliary tasks, encouraging richer feature embeddings in our primary task of differential expression prediction.

RESULTS

Using data from Roadmap Epigenomics Project (REMC) for ten different pairs of cell types, we show that DeepDiff significantly outperforms the state-of-the-art baselines for differential gene expression prediction. The learned attention weights are validated by observations from previous studies about how epigenetic mechanisms connect to differential gene expression.

AVAILABILITY AND IMPLEMENTATION

Codes and results are available at deepchrome.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

能够根据组蛋白修饰信号预测差异基因表达的计算方法对于理解组蛋白修饰如何通过影响差异基因调控来控制细胞的功能异质性是非常有必要的。最近的研究要么未能捕捉到对差异预测的组合效应,要么主要侧重于细胞类型特异性分析。在本文中,我们开发了一种新颖的基于注意力的深度学习架构 DeepDiff,它为模型提供了一个统一的端到端解决方案,并解释了组蛋白修饰之间的依赖关系如何控制基因调控的差异模式。DeepDiff 使用多个长短期记忆 (LSTM) 模块的层次结构对输入信号的空间结构进行编码,并自动建模各种组蛋白修饰如何协作。我们共同引入和训练两个级别的注意力,使 DeepDiff 能够有区别地关注相关修饰,并找到每个修饰的重要基因组位置。此外,DeepDiff 引入了一种新的基于深度学习的多任务公式,将细胞类型特异性基因表达预测用作辅助任务,鼓励在我们的差异表达预测主要任务中进行更丰富的特征嵌入。

结果

使用来自 Roadmap Epigenomics Project (REMC) 的十个不同细胞类型对的数据,我们表明 DeepDiff 显著优于用于差异基因表达预测的最新基准。从先前关于表观遗传机制如何与差异基因表达相关联的研究中观察到的学习注意力权重得到了验证。

可用性和实现

代码和结果可在 deepchrome.org 获得。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验