Suppr超能文献

放射组学:图像分析的现状与挑战

Radiomics: the facts and the challenges of image analysis.

作者信息

Rizzo Stefania, Botta Francesca, Raimondi Sara, Origgi Daniela, Fanciullo Cristiana, Morganti Alessio Giuseppe, Bellomi Massimo

机构信息

Department of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, IT, Italy.

Medical Physics, European Institute of Oncology, Milan, Italy.

出版信息

Eur Radiol Exp. 2018 Nov 14;2(1):36. doi: 10.1186/s41747-018-0068-z.

Abstract

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and model building. Each step needs careful evaluation for the construction of robust and reliable models to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested with internal cross-validation and then validated on independent external cohorts. This article summarises the major issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.

摘要

放射组学是一个新兴的转化研究领域,旨在从临床图像中提取可挖掘的高维数据。放射组学过程可分为具有可定义输入和输出的不同步骤,如图像采集与重建、图像分割、特征提取与量化、分析以及模型构建。为构建稳健且可靠的模型以用于预后、无创疾病跟踪和疾病治疗反应评估并转化为临床实践,每个步骤都需要仔细评估。在定义纹理参数(形状特征;一阶、二阶和高阶特征)之后,我们简要讨论放射组学这一术语的起源以及选择对放射组学方法有用的参数的方法,包括聚类分析、主成分分析、随机森林、神经网络、线性/逻辑回归等。参数的可重复性和临床价值应首先通过内部交叉验证进行测试,然后在独立的外部队列中进行验证。本文总结了关于这一多步骤过程的主要问题,尤其关注从计算机断层扫描、正电子发射断层扫描和磁共振成像提供的数据集中提取放射组学特征的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ddf/6234198/1d32af3a9575/41747_2018_68_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验