Peeken Jan Caspar, Nüsslin Fridtjof, Combs Stephanie E
Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, München, Germany.
Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Strahlenther Onkol. 2017 Oct;193(10):767-779. doi: 10.1007/s00066-017-1175-0. Epub 2017 Jul 7.
Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow.
After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created.
Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization.
Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches.
This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.
放射组学是一个最近引入的概念,它描述了基于计算机算法从包括计算机断层扫描(CT)、磁共振成像(MRT)或正电子发射断层扫描(PET)图像在内的成像数据中进行定量特征提取。对于放射肿瘤学而言,它有可能显著影响临床决策,进而影响治疗计划和随访流程。
在图像采集、图像预处理以及通过结构分割定义感兴趣区域之后,应用算法来计算形状、强度、纹理和多尺度滤波特征。通过组合多个特征并将它们与临床结果相关联,可以创建预后模型。
回顾性研究已经提出了放射组学分类器,用于预测例如总生存期、放射治疗反应、远处转移或放射相关毒性。此外,放射组学特征可以与基因组信息(“放射基因组学”)相关联,并可用于肿瘤特征描述。
基于数据以及基于基因组学的特征所形成的独特模式将在未来影响放射肿瘤学。在剂量水平调整和靶区定义以及其他与结果相关的参数方面的个体化治疗将取决于放射组学和放射基因组学。通过整合各种数据集,可以提高预后能力,使放射组学成为未来精准医学方法的重要组成部分。
这一观点证明了放射组学概念在放射肿瘤学中的依据。强调了进一步研究将放射组学分类器整合到临床决策和放射治疗流程中的必要性。