IBM Research - Zürich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland.
Nano Lett. 2018 Dec 12;18(12):7856-7862. doi: 10.1021/acs.nanolett.8b03632. Epub 2018 Nov 19.
Recent research on nanowires (NWs) demonstrated the ability of III-V semiconductors to adopt a different crystallographic phase when they are grown as nanostructures, giving rise to a novel class of materials with unique properties. Controlling the crystal structure however remains difficult and the geometrical constraints of NWs cause integration challenges for advanced devices. Here, we report for the first time on the phase-controlled growth of micron-sized planar InP films by selecting confined growth planes during template-assisted selective epitaxy. We demonstrate this by varying the orientation of predefined templates, which results in concurrent formation of zinc-blende (ZB) and wurtzite (WZ) material exhibiting phase purities of 100% and 97%, respectively. Optical characterization revealed a 70 meV higher band gap and a 2.5× lower lifetime for WZ InP in comparison to its natural ZB phase. Further, a model for the transition of the crystal structure is presented based on the observed growth facets and the bonding configuration of InP surfaces.
最近关于纳米线(NWs)的研究表明,当 III-V 半导体作为纳米结构生长时,它们能够采用不同的晶体相,从而产生一类具有独特性质的新型材料。然而,控制晶体结构仍然很困难,并且 NWs 的几何约束导致先进设备的集成面临挑战。在这里,我们首次报告了通过在模板辅助选择性外延过程中选择受限生长平面来实现微米级平面 InP 薄膜的相控生长。我们通过改变预定义模板的方向来证明这一点,这导致了闪锌矿(ZB)和纤锌矿(WZ)材料的同时形成,其相纯度分别为 100%和 97%。与自然 ZB 相比,光学特性表明 WZ InP 的能带隙高 70 meV,寿命低 2.5 倍。此外,根据观察到的生长面和 InP 表面的键合构型,提出了一种晶体结构转变的模型。