Vedel Christian Dam, Smidstrup Søren, Georgiev Vihar P
Device Modelling Group, James Watt School of Engineering, University of Glasgow, Glasgow, UK.
Synopsys Denmark ApS, Copenhagen, Denmark.
Sci Rep. 2022 Nov 16;12(1):19724. doi: 10.1038/s41598-022-24239-w.
In this paper we study polytypic defects in Indium Phosphide (InP) using the complementary first-principles methods of density functional theory and non-equilibrium Greens functions. Specifically we study interfaces between the ground state Zincblende crystal structure and the meta-stable Wurtzite phase, with an emphasis on the rotational twin plane defect, which forms due to the polytypic nature of InP. We found that the transition of the band structure across the interface is anisotropic and lasts 7 nm (3.5 nm). Due to this, a crystal-phase quantum well would require a minimal width of 10 nm, which eliminates rotational twin planes as possible quantum wells. We also found that for conducting current, the interfaces increase conductivity along the defect-plane ([11[Formula: see text]]), whereas due to real growth limitations, despite the interfaces reducing conductivity across the defect-plane ([111]), we found that a high degree of polytypic defects are still desirable. This was argued to be the case, due to a higher fraction of Wurtzite segments in a highly phase-intermixed system.
在本文中,我们使用密度泛函理论和非平衡格林函数这两种互补的第一性原理方法,研究磷化铟(InP)中的多型性缺陷。具体而言,我们研究基态闪锌矿晶体结构与亚稳纤锌矿相之间的界面,重点关注由于InP的多型性而形成的旋转孪晶面缺陷。我们发现,能带结构在界面处的转变是各向异性的,持续长度为7纳米(3.5纳米)。因此,晶体相量子阱的最小宽度需要10纳米,这排除了旋转孪晶面作为可能的量子阱。我们还发现,对于传导电流而言,界面会增加沿缺陷平面([11[公式:见正文]])的电导率,然而,由于实际生长限制,尽管界面会降低跨缺陷平面([111])的电导率,但我们发现高度的多型性缺陷仍然是可取的。有人认为情况就是如此,因为在高度相混合的系统中纤锌矿段的比例更高。