Department of Applied Physics, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands.
Kavli Institute of Nanoscience, Delft University of Technology , 2628 CJ Delft, The Netherlands.
Nano Lett. 2017 Jan 11;17(1):85-90. doi: 10.1021/acs.nanolett.6b03488. Epub 2016 Dec 27.
Group IV materials with the hexagonal diamond crystal structure have been predicted to exhibit promising optical and electronic properties. In particular, hexagonal silicon-germanium (SiGe) should be characterized by a tunable direct band gap with implications ranging from Si-based light-emitting diodes to lasers and quantum dots for single photon emitters. Here we demonstrate the feasibility of high-quality defect-free and wafer-scale hexagonal SiGe growth with precise control of the alloy composition and layer thickness. This is achieved by transferring the hexagonal phase from a GaP/Si core/shell nanowire template, the same method successfully employed by us to realize hexagonal Si. We determine the optimal growth conditions in order to achieve single-crystalline layer-by-layer SiGe growth in the preferred stoichiometry region. Our results pave the way for exploiting the novel properties of hexagonal SiGe alloys in technological applications.
具有六方金刚石晶体结构的 IV 族材料被预言具有有前景的光学和电子性质。特别是,六方硅-锗(SiGe)应该具有可调谐的直接带隙,其应用范围从基于 Si 的发光二极管到激光和单光子发射器的量子点。在这里,我们展示了在精确控制合金成分和层厚度的情况下,实现高质量、无缺陷和晶圆级六方 SiGe 生长的可行性。这是通过从 GaP/Si 核/壳纳米线模板转移六方相来实现的,我们曾成功地使用相同的方法实现了六方 Si。我们确定了最佳的生长条件,以在优先的化学计量比区域实现单晶层状 SiGe 生长。我们的结果为在技术应用中利用六方 SiGe 合金的新性质铺平了道路。