Suppr超能文献

在涂有P4HB的聚乙醇酸(PGA)支架上生长的经导管去细胞组织工程心脏瓣膜(dTEHV),由于聚醚醚酮(PEEK)插入物,在52周内功能得到改善。

Transcatheter Decellularized Tissue-Engineered Heart Valve (dTEHV) Grown on Polyglycolic Acid (PGA) Scaffold Coated with P4HB Shows Improved Functionality over 52 Weeks due to Polyether-Ether-Ketone (PEEK) Insert.

作者信息

Bruder Leon, Spriestersbach Hendrik, Brakmann Kerstin, Stegner Valentin, Sigler Matthias, Berger Felix, Schmitt Boris

机构信息

Deutsches Herzzentrum Berlin, Department of Congenital Heart Disease, 13353 Berlin, Germany.

Universitätsmedizin Göttingen, Herzzentrum Göttingen, Department of Pediatric Cardiology, 37075 Göttingen, Germany.

出版信息

J Funct Biomater. 2018 Nov 13;9(4):64. doi: 10.3390/jfb9040064.

Abstract

Many congenital heart defects and degenerative valve diseases require replacement of heart valves in children and young adults. Transcatheter xenografts degenerate over time. Tissue engineering might help to overcome this limitation by providing valves with ability for self-repair. A transcatheter decellularized tissue-engineered heart valve (dTEHV) was developed using a polyglycolic acid (PGA) scaffold. A first prototype showed progressive regurgitation after 6 months in-vivo due to a suboptimal design and misguided remodeling process. A new geometry was developed accordingly with computational fluid dynamics (CFD) simulations and implemented by adding a polyether-ether-ketone (PEEK) insert to the bioreactor during cultivation. This lead to more belly-shaped leaflets with higher coaptation areas for this second generation dTEHV. Valve functionality assessed via angiography, intracardiac echocardiography, and MRI proved to be much better when compared the first generation dTEHV, with preserved functionality up to 52 weeks after implantation. Macroscopic findings showed no thrombi or signs of acute inflammation. For the second generation dTEHV, belly-shaped leaflets with soft and agile tissue-formation were seen after explantation. No excessive leaflet shortening occurred in the second generation dTEHV. Histological analysis showed complete engraftment of the dTEHV, with endothelialization of the leaflets and the graft wall. Leaflets consisted of collagenous tissue and some elastic fibers. Adaptive leaflet remodeling was visible in all implanted second generation dTEHV, and most importantly no fusion between leaflet and wall was found. Very few remnants of the PGA scaffold were detected even 52 weeks after implantation, with no influence on functionality. By adding a polyether-ether-ketone (PEEK) insert to the bioreactor construct, a new geometry of PGA-scaffold based dTEHV could be implemented. This resulted in very good valve function of the implanted dTEHV over a period of 52 weeks.

摘要

许多先天性心脏缺陷和退行性瓣膜疾病需要为儿童和年轻成人更换心脏瓣膜。经导管植入的异种移植物会随着时间推移而退化。组织工程学或许有助于通过为瓣膜提供自我修复能力来克服这一局限性。一种使用聚乙醇酸(PGA)支架开发的经导管去细胞组织工程心脏瓣膜(dTEHV)。首个原型在体内6个月后出现了渐进性反流,原因是设计欠佳和重塑过程有误。因此,通过计算流体动力学(CFD)模拟开发了一种新的几何形状,并在培养过程中通过向生物反应器中添加聚醚醚酮(PEEK)插入物来实现。这使得第二代dTEHV的瓣叶更呈腹部形状,贴合面积更大。通过血管造影、心内超声心动图和磁共振成像评估的瓣膜功能,与第一代dTEHV相比有了很大改善,植入后52周功能仍得以保留。宏观检查结果显示无血栓或急性炎症迹象。对于第二代dTEHV,取出后可见呈腹部形状的柔软且灵活的组织形成的瓣叶。第二代dTEHV未出现瓣叶过度缩短。组织学分析显示dTEHV完全植入,瓣叶和移植物壁内皮化。瓣叶由胶原组织和一些弹性纤维组成。在所有植入的第二代dTEHV中均可见适应性瓣叶重塑,最重要的是未发现瓣叶与壁之间融合。即使在植入52周后,也仅检测到极少量PGA支架残余物,且对功能无影响。通过向生物反应器构建物中添加聚醚醚酮(PEEK)插入物,可以实现基于PGA支架的dTEHV的新几何形状。这使得植入的dTEHV在52周内具有非常良好的瓣膜功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验