Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Anal Chim Acta. 2018 Dec 26;1042:93-108. doi: 10.1016/j.aca.2018.08.032. Epub 2018 Aug 20.
Development of selective, sensitive and non-enzymatic sensor for glucose determination is highly important for the diagnosis and management of diabetes. Herein, we have reported the novel ultra sensitive and non-enzymatic sensor development by in-situ wraped NiO nanostructures (∼10-15 nm) on the sulfur-doped hollow carbon nanospheres (SDHCNSs) through hydrothermal-assisted process. The structural and morphological properties of the nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The prepared NiO@SDHCNSs was directly used as an electrochemical sensor for glucose determination, and its performance was evaluated by cyclic voltammetry and amperometric techniques. The fabricated non-enzymatic biosensor was exhibited remarkably good sensitivity (1697 μA mMcm), low detection limit (LOD) (52 nM), a wide linear range (up to 13 mM) of glucose with desirable selectivity, stability and reproducibility. Further, the constructed sensor has demonstrated an excellent anti-interference property in the presence of common interferences such as dopamine (DA), uric acid (UA) and ascorbic acid (AA). Most interestingly, the fabricated electrode is applicable for the practical analysis of glucose in the real blood serum and urine samples. The excellent electrochemical performances of NiO@SDHCNSs towards the oxidation of glucose are attributed to the increased electron transfer passage through unique hollow spherical morphology with increased redox couple of Ni(OH)/NiOOH derived from NiO. Thus, the improved electrochemical performances of NiO@SDHCNSs can be adopted as a potential electrode for the real sample analysis.
开发用于葡萄糖测定的选择性、灵敏性和非酶传感器对于糖尿病的诊断和管理非常重要。在此,我们通过水热辅助工艺报道了一种新颖的超灵敏和非酶传感器的开发,该传感器通过原位包裹在硫掺杂空心碳纳米球(SDHCNS)上的 NiO 纳米结构(∼10-15nm)实现。纳米复合材料的结构和形态特性通过 X 射线衍射(XRD)、拉曼光谱、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和 X 射线光电子能谱(XPS)技术进行了表征。所制备的 NiO@SDHCNS 直接用作葡萄糖测定的电化学传感器,并通过循环伏安法和安培技术评估其性能。所制备的非酶生物传感器表现出显著的良好灵敏度(1697μA mMcm)、低检测限(LOD)(52nM)、宽线性范围(高达 13mM)的葡萄糖,具有良好的选择性、稳定性和重现性。此外,该构建的传感器在存在常见干扰物如多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的情况下表现出出色的抗干扰性能。最有趣的是,所制备的电极可用于实际分析真实血清和尿液样本中的葡萄糖。NiO@SDHCNSs 对葡萄糖氧化的优异电化学性能归因于独特的空心球形形态增加了电子转移通道,并且 NiO 衍生的 Ni(OH)/NiOOH 的氧化还原对增加。因此,NiO@SDHCNSs 的电化学性能的提高可用于实际样品分析的潜在电极。