Suppr超能文献

基于 CT 的放射组学特征区分孤立性肉芽肿性结节与实性肺腺癌。

CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma.

机构信息

Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, Guangzhou, China.

National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, Guangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

出版信息

Lung Cancer. 2018 Nov;125:109-114. doi: 10.1016/j.lungcan.2018.09.013. Epub 2018 Sep 17.

Abstract

OBJECTIVES

Pulmonary granulomatous nodule (GN) with spiculated or lobulated appearance are indistinguishable from solid lung adenocarcinoma (SADC) based on CT morphological features, and partial false-positive findings on PET/CT. The objective of this study was to investigate the ability of quantitative CT radiomics for preoperatively differentiating solitary atypical GN from SADC.

METHODS

302 eligible patients (SADC = 209, GN = 93) were evaluated in this retrospective study and were divided into training (n = 211) and validation cohorts (n = 91). Radiomics features were extracted from plain and vein-phase CT images. The L1 regularized logistic regression model was used to identify the optimal radiomics features for construction of a radiomics model in differentiate solitary GN from SADC. The performance of the constructed radiomics model was evaluated using the area under curve (AUC) of receiver operating characteristic curve (ROC).

RESULTS

16.7% (35/209) of SADC were misdiagnosed as GN and 24.7% (23/93) of GN were misdiagnosed as lung cancer before surgery. The AUCs of combined radiomics and clinical risk factors were 0.935, 0.902, and 0.923 in the training cohort of plain radiomics(PR), vein radiomics, and plain and vein radiomics, and were 0.817, 0835, and 0.841 in the validation cohort of three models, respectively. PR combined with clinical risk factors (PRC) performed better than simple radiomics models (p < 0.05). The diagnostic accuracy of PRC in the total cohorts was similar to our radiologists (p ≥ 0.05).

CONCLUSIONS

As a noninvasive method, PRC has the ability to identify SADC and GN with spiculation or lobulation.

摘要

目的

肺部肉芽肿性结节(GN)具有刺状或分叶状外观,在 CT 形态特征上与实性肺腺癌(SADC)无法区分,并且在 PET/CT 上存在部分假阳性结果。本研究旨在探讨定量 CT 放射组学术前区分孤立性不典型 GN 与 SADC 的能力。

方法

本回顾性研究共纳入 302 名符合条件的患者(SADC=209 例,GN=93 例),并将其分为训练集(n=211)和验证集(n=91)。从平扫和静脉期 CT 图像中提取放射组学特征。采用 L1 正则逻辑回归模型识别构建 GN 与 SADC 鉴别模型的最优放射组学特征。采用受试者工作特征曲线(ROC)下面积(AUC)评估构建的放射组学模型的性能。

结果

术前 16.7%(35/209)的 SADC 误诊为 GN,24.7%(23/93)的 GN 误诊为肺癌。在平扫组、静脉组和联合组中,联合放射组学和临床危险因素的 AUC 在训练集分别为 0.935、0.902 和 0.923,在验证集分别为 0.817、0.835 和 0.841。与单纯的放射组学模型相比,平扫组联合临床危险因素(PRC)的诊断效能更高(p<0.05)。PRC 在总体队列中的诊断准确性与我们的放射科医生相似(p≥0.05)。

结论

作为一种非侵入性方法,PRC 具有识别具有刺状或分叶状外观的 SADC 和 GN 的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验