College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
J Xray Sci Technol. 2023;31(5):981-999. doi: 10.3233/XST-230063.
Pulmonary granulomatous nodules (GN) with spiculation or lobulation have a similar morphological appearance to solid lung adenocarcinoma (SADC) under computed tomography (CT). However, these two kinds of solid pulmonary nodules (SPN) have different malignancies and are sometimes misdiagnosed.
This study aims to predict malignancies of SPNs by a deep learning model automatically.
A chimeric label with self-supervised learning (CLSSL) is proposed to pre-train a ResNet-based network (CLSSL-ResNet) for distinguishing isolated atypical GN from SADC in CT images. The malignancy, rotation, and morphology labels are integrated into a chimeric label and utilized to pre-train a ResNet50. The pre-trained ResNet50 is then transferred and fine-tuned to predict the malignancy of SPN. Two image datasets of 428 subjects (Dataset1, 307; Dataset2, 121) from different hospitals are collected. Dataset1 is divided into training, validation, and test data by a ratio of 7:1:2 to develop the model. Dataset2 is utilized as an external validation dataset.
CLSSL-ResNet achieves an area under the ROC curve (AUC) of 0.944 and an accuracy (ACC) of 91.3%, which was much higher than that of the consensus of two experienced chest radiologists (77.3%). CLSSL-ResNet also outperforms other self-supervised learning models and many counterparts of other backbone networks. In Dataset2, AUC and ACC of CLSSL-ResNet are 0.923 and 89.3%, respectively. Additionally, the ablation experiment result indicates higher efficiency of the chimeric label.
CLSSL with morphology labels can increase the ability of feature representation by deep networks. As a non-invasive method, CLSSL-ResNet can distinguish GN from SADC via CT images and may support clinical diagnoses after further validation.
在计算机断层扫描(CT)下,具有毛刺或分叶的肺部肉芽肿性结节(GN)与实性肺腺癌(SADC)具有相似的形态外观。然而,这两种实性肺结节(SPN)具有不同的恶性程度,有时会被误诊。
本研究旨在通过深度学习模型自动预测 SPN 的恶性程度。
提出了一种基于自监督学习的混合标签(CLSSL),用于预训练基于 ResNet 的网络(CLSSL-ResNet),以区分 CT 图像中孤立的不典型 GN 和 SADC。恶性、旋转和形态标签被整合到一个混合标签中,用于预训练 ResNet50。然后,预训练的 ResNet50 被转移并进行微调,以预测 SPN 的恶性程度。从两家不同医院收集了 428 名患者的两个图像数据集(数据集 1,307 例;数据集 2,121 例)。数据集 1 通过 7:1:2 的比例分为训练、验证和测试数据来开发模型。数据集 2 用作外部验证数据集。
CLSSL-ResNet 的 ROC 曲线下面积(AUC)为 0.944,准确率(ACC)为 91.3%,明显高于两位有经验的胸部放射科医生共识(77.3%)。CLSSL-ResNet 还优于其他自监督学习模型和许多其他骨干网络的对应模型。在数据集 2 中,CLSSL-ResNet 的 AUC 和 ACC 分别为 0.923 和 89.3%。此外,消融实验结果表明,混合标签的效率更高。
具有形态学标签的 CLSSL 可以通过深度网络提高特征表示能力。作为一种非侵入性方法,CLSSL-ResNet 可以通过 CT 图像区分 GN 和 SADC,并在进一步验证后可能支持临床诊断。