Suppr超能文献

影像组学特征作为区分轻度认知障碍向阿尔茨海默病快速和缓慢进展的预测指标。

Radiomics features as predictors to distinguish fast and slow progression of Mild Cognitive Impairment to Alzheimer's disease.

作者信息

Li Yupeng, Jiang Jiehui, Shen Ting, Wu Ping, Zuo Chuantao

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:127-130. doi: 10.1109/EMBC.2018.8512273.

Abstract

Prediction of Alzheimer's disease (AD) from Mild Cognitive Impairment (MCI) by analyzing Magnetic Resonance Imaging (MRI) image features has become popular in recent years. However, defining effective predictive biomarkers is still challengeable. The 'radiomics' is an established method to identify advanced and high order quantitative imaging features for computer-aided diagnosis and has been applied into oncology study. However, it has not been applied into brain disorder disease study. Therefore, the purpose of this study is to identify whether the features from radiomics could be the predictors of the conversion from MCI to AD. We analyzed 197 samples with MRI scans from the ADNI database, which contained 32 healthy subjects and 165 MCI patients. Firstly, we extracted 215 radiomics features from hippocampus. Then we used Cronbach's alpha coefficient, the intra-class correlation coefficient, Kaplan-Meier model and cox regression to select 44 radiomics features as effective features. Finally, we used SVM classification to validate these features. The results showed that the classification accuracy using linear, polynomial and sigmoid kernel could achieve 80.0%, 93.3% and 86.6% to distinguish MCI-to-AD fast and slow converter. As a result, this study indicated that the radiomics features are potential to be applied into predicting AD from MCI.

摘要

近年来,通过分析磁共振成像(MRI)图像特征从轻度认知障碍(MCI)预测阿尔茨海默病(AD)已变得流行起来。然而,定义有效的预测生物标志物仍然具有挑战性。“放射组学”是一种用于识别计算机辅助诊断的高级和高阶定量成像特征的既定方法,已应用于肿瘤学研究。然而,它尚未应用于脑部疾病研究。因此,本研究的目的是确定放射组学特征是否可以作为MCI向AD转化的预测指标。我们分析了来自ADNI数据库的197份MRI扫描样本,其中包括32名健康受试者和165名MCI患者。首先,我们从海马体中提取了215个放射组学特征。然后,我们使用克朗巴哈系数、组内相关系数、卡普兰-迈耶模型和考克斯回归来选择44个放射组学特征作为有效特征。最后,我们使用支持向量机分类来验证这些特征。结果表明,使用线性、多项式和Sigmoid核的分类准确率分别为80.0%、93.3%和86.6%,可以区分MCI向AD的快速和慢速转化者。因此,本研究表明,放射组学特征有可能应用于从MCI预测AD。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验