Suppr超能文献

全脑区域与阿尔茨海默病潜在关联的研究:基于人工智能模型的一项研究

Investigation of Underlying Association Between Whole Brain Regions and Alzheimer's Disease: A Research Based on an Artificial Intelligence Model.

作者信息

Liu Shui, Jie Chen, Zheng Weimin, Cui Jingjing, Wang Zhiqun

机构信息

Department of Radiology, Aerospace Center Hospital, Beijing, China.

出版信息

Front Aging Neurosci. 2022 Jun 7;14:872530. doi: 10.3389/fnagi.2022.872530. eCollection 2022.

Abstract

Alzheimer's disease (AD) is the most common form of dementia, causing progressive cognitive decline. Radiomic features obtained from structural magnetic resonance imaging (sMRI) have shown a great potential in predicting this disease. However, radiomic features based on the whole brain segmented regions have not been explored yet. In our study, we collected sMRI data that include 80 patients with AD and 80 healthy controls (HCs). For each patient, the T1 weighted image (T1WI) images were segmented into 106 subregions, and radiomic features were extracted from each subregion. Then, we analyzed the radiomic features of specific brain subregions that were most related to AD. Based on the selective radiomic features from specific brain subregions, we built an integrated model using the best machine learning algorithms, and the diagnostic accuracy was evaluated. The subregions most relevant to AD included the hippocampus, the inferior parietal lobe, the precuneus, and the lateral occipital gyrus. These subregions exhibited several important radiomic features that include shape, gray level size zone matrix (GLSZM), and gray level dependence matrix (GLDM), among others. Based on the comparison among different algorithms, we constructed the best model using the Logistic regression (LR) algorithm, which reached an accuracy of 0.962. Conclusively, we constructed an excellent model based on radiomic features from several specific AD-related subregions, which could give a potential biomarker for predicting AD.

摘要

阿尔茨海默病(AD)是最常见的痴呆形式,会导致进行性认知衰退。从结构磁共振成像(sMRI)获得的放射组学特征在预测这种疾病方面已显示出巨大潜力。然而,基于全脑分割区域的放射组学特征尚未得到探索。在我们的研究中,我们收集了sMRI数据,其中包括80例AD患者和80名健康对照(HCs)。对于每位患者,T1加权图像(T1WI)被分割为106个子区域,并从每个子区域提取放射组学特征。然后,我们分析了与AD最相关的特定脑区的放射组学特征。基于来自特定脑区的选择性放射组学特征,我们使用最佳机器学习算法构建了一个综合模型,并评估了诊断准确性。与AD最相关的子区域包括海马体、顶下叶、楔前叶和枕外侧回。这些子区域表现出几个重要的放射组学特征,包括形状、灰度大小区域矩阵(GLSZM)和灰度依赖矩阵(GLDM)等。基于不同算法之间的比较,我们使用逻辑回归(LR)算法构建了最佳模型,其准确率达到了0.962。总之,我们基于几个与AD相关的特定子区域的放射组学特征构建了一个优秀的模型,该模型可为预测AD提供潜在的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fee0/9211045/f5cc1953965d/fnagi-14-872530-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验