Suppr超能文献

MRI 放射组学在阿尔茨海默病和轻度认知障碍中的分类和预测:综述。

MRI Radiomics Classification and Prediction in Alzheimer's Disease and Mild Cognitive Impairment: A Review.

机构信息

Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Curr Alzheimer Res. 2020;17(3):297-309. doi: 10.2174/1567205017666200303105016.

Abstract

BACKGROUND

Alzheimer's Disease (AD) is a progressive neurodegenerative disease that threatens the health of the elderly. Mild Cognitive Impairment (MCI) is considered to be the prodromal stage of AD. To date, AD or MCI diagnosis is established after irreversible brain structure alterations. Therefore, the development of new biomarkers is crucial to the early detection and treatment of this disease. At present, there exist some research studies showing that radiomics analysis can be a good diagnosis and classification method in AD and MCI.

OBJECTIVE

An extensive review of the literature was carried out to explore the application of radiomics analysis in the diagnosis and classification among AD patients, MCI patients, and Normal Controls (NCs).

RESULTS

Thirty completed MRI radiomics studies were finally selected for inclusion. The process of radiomics analysis usually includes the acquisition of image data, Region of Interest (ROI) segmentation, feature extracting, feature selection, and classification or prediction. From those radiomics methods, texture analysis occupied a large part. In addition, the extracted features include histogram, shapebased features, texture-based features, wavelet features, Gray Level Co-Occurrence Matrix (GLCM), and Run-Length Matrix (RLM).

CONCLUSION

Although radiomics analysis is already applied to AD and MCI diagnosis and classification, there still is a long way to go from these computer-aided diagnostic methods to the clinical application.

摘要

背景

阿尔茨海默病(AD)是一种进行性神经退行性疾病,威胁着老年人的健康。轻度认知障碍(MCI)被认为是 AD 的前驱阶段。迄今为止,AD 或 MCI 的诊断是在不可逆的大脑结构改变后确立的。因此,开发新的生物标志物对于早期发现和治疗这种疾病至关重要。目前,有一些研究表明,放射组学分析可以作为 AD 和 MCI 的一种很好的诊断和分类方法。

目的

对文献进行广泛回顾,探讨放射组学分析在 AD 患者、MCI 患者和正常对照者(NC)中的诊断和分类中的应用。

结果

最终选择了 30 项完成的 MRI 放射组学研究进行纳入。放射组学分析的过程通常包括图像数据的获取、感兴趣区(ROI)分割、特征提取、特征选择以及分类或预测。在这些放射组学方法中,纹理分析占据了很大一部分。此外,提取的特征包括直方图、基于形状的特征、基于纹理的特征、小波特征、灰度共生矩阵(GLCM)和运行长度矩阵(RLM)。

结论

虽然放射组学分析已经应用于 AD 和 MCI 的诊断和分类,但从这些计算机辅助诊断方法到临床应用还有很长的路要走。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验