Suppr超能文献

利用深度学习检测颅内出血。

Detecting Intracranial Hemorrhage with Deep Learning.

作者信息

Majumdar Arjun, Brattain Laura, Telfer Brian, Farris Chad, Scalera Jonathan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:583-587. doi: 10.1109/EMBC.2018.8512336.

Abstract

Initial results are reported on automated detection of intracranial hemorrhage from CT, which would be valuable in a computer-aided diagnosis system to help the radiologist detect subtle hemorrhages. Previous work has taken a classic approach involving multiple steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification. Our current work instead uses a deep convolutional neural network to simultaneously learn features and classification, eliminating the multiple hand-tuned steps. Performance is improved by computing the mean output for rotations of the input image. Postprocessing is additionally applied to the CNN output to significantly improve specificity. The database consists of 134 CT cases (4,300 images), divided into 60, 5, and 69 cases for training, validation, and test. Each case typically includes multiple hemorrhages. Performance on the test set was 81% sensitivity per lesion (34/42 lesions) and 98% specificity per case (45/46 cases). The sensitivity is comparable to previous results (on different datasets), but with a significantly higher specificity. In addition, insights are shared to improve performance as the database is expanded.

摘要

报告了从CT自动检测颅内出血的初步结果,这在计算机辅助诊断系统中对于帮助放射科医生检测细微出血具有重要价值。先前的工作采用了一种经典方法,涉及多个步骤,包括对齐、图像处理、图像校正、手工特征提取和分类。我们目前的工作则使用深度卷积神经网络同时学习特征和进行分类,省去了多个手工调整步骤。通过计算输入图像旋转后的平均输出提高了性能。此外,对卷积神经网络的输出进行后处理以显著提高特异性。数据库由134例CT病例(4300张图像)组成,分为60例、5例和69例用于训练、验证和测试。每个病例通常包括多处出血。测试集上的性能为每个病灶的灵敏度81%(42个病灶中的34个)和每个病例的特异性98%(46个病例中的45个)。灵敏度与先前结果(在不同数据集上)相当,但特异性显著更高。此外,随着数据库的扩展,还分享了提高性能的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验