Van Steenkiste Tom, Ruyssinck Joeri, Janssens Olivier, Vandersmissen Baptist, Vandecasteele Florian, Devolder Pieter, Achten Eric, Van Hoecke Sofie, Deschrijver Dirk, Dhaene Tom
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:674-677. doi: 10.1109/EMBC.2018.8512334.
Bone age is an essential measure of skeletal maturity in children with growth disorders. It is typically assessed by a trained physician using radiographs of the hand and a reference model. However, it has been described that the reference models leave room for interpretation leading to a large inter-observer and intra-observer variation. In this work, we explore a novel method for automated bone age assessment to assist physicians with their estimation. It consists of a powerful combination of deep learning and Gaussian process regression. Using this combination, sensitivity of the deep learning model to rotations and flips of the input images can be exploited to increase overall predictive performance compared to only using the deep learning network. We validate our approach retrospectively on a set of 12611 radiographs of patients between 0 and 19 years of age.
骨龄是评估患有生长障碍儿童骨骼成熟度的一项重要指标。通常由经过培训的医生通过手部X光片和参考模型来进行评估。然而,已有研究表明,参考模型存在一定的解释空间,这导致了观察者间和观察者内的较大差异。在这项研究中,我们探索了一种用于自动骨龄评估的新方法,以辅助医生进行骨龄估计。该方法将深度学习与高斯过程回归进行了有效结合。通过这种结合,与仅使用深度学习网络相比,深度学习模型对输入图像旋转和翻转的敏感性得以利用,从而提高了整体预测性能。我们对一组12611张0至19岁患者的X光片进行了回顾性验证。