Xu Xinzheng, Xu Huihui, Li Zhongnian
School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China.
Healthcare (Basel). 2022 Oct 30;10(11):2170. doi: 10.3390/healthcare10112170.
Bone age assessment (BAA) based on X-ray imaging of the left hand and wrist can accurately reflect the degree of the body's physiological development and physical condition. However, the traditional manual evaluation method relies too much on inefficient specialist labor. In this paper, to propose automatic BAA, we introduce a hierarchical convolutional neural network to detect the regions of interest (ROI) and classify the bone grade. Firstly, we establish a dataset of children's BAA containing 2518 left hand X-rays. Then, we use the fine-grained classification to obtain the grade of the region of interest via object detection. Specifically, fine-grained classifiers are based on context-aware attention pooling (CAP). Finally, we perform the model assessment of bone age using the third version of the Tanner-Whitehouse (TW3) methodology. The end-to-end BAA system provides bone age values, the detection results of 13 ROIs, and the bone maturity of the ROIs, which are convenient for doctors to obtain information for operation. Experimental results on the public dataset and clinical dataset show that the performance of the proposed method is competitive. The accuracy of bone grading is 86.93%, and the mean absolute error (MAE) of bone age is 7.68 months on the clinical dataset. On public dataset, the MAE is 6.53 months. The proposed method achieves good performance in bone age assessment and is superior to existing fine-grained image classification methods.
基于左手和手腕X射线成像的骨龄评估(BAA)能够准确反映身体的生理发育程度和身体状况。然而,传统的人工评估方法过于依赖效率低下的专家人力。在本文中,为了提出自动骨龄评估方法,我们引入了一种分层卷积神经网络来检测感兴趣区域(ROI)并对骨骼等级进行分类。首先,我们建立了一个包含2518张左手X射线图像的儿童骨龄评估数据集。然后,我们通过目标检测使用细粒度分类来获得感兴趣区域的等级。具体来说,细粒度分类器基于上下文感知注意力池化(CAP)。最后,我们使用第三版坦纳-怀特豪斯(TW3)方法进行骨龄的模型评估。这个端到端的骨龄评估系统提供骨龄值、13个感兴趣区域的检测结果以及这些区域的骨骼成熟度,方便医生获取操作所需信息。在公共数据集和临床数据集上的实验结果表明,所提方法的性能具有竞争力。在临床数据集上,骨骼分级的准确率为86.93%,骨龄的平均绝对误差(MAE)为7.68个月。在公共数据集上,平均绝对误差为6.53个月。所提方法在骨龄评估中取得了良好的性能,并且优于现有的细粒度图像分类方法。