School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China.
Sensors (Basel). 2023 May 17;23(10):4834. doi: 10.3390/s23104834.
Bone age assessment (BAA) is a typical clinical technique for diagnosing endocrine and metabolic diseases in children's development. Existing deep learning-based automatic BAA models are trained on the Radiological Society of North America dataset (RSNA) from Western populations. However, due to the difference in developmental process and BAA standards between Eastern and Western children, these models cannot be applied to bone age prediction in Eastern populations. To address this issue, this paper collects a bone age dataset based on the East Asian populations for model training. Nevertheless, it is laborious and difficult to obtain enough X-ray images with accurate labels. In this paper, we employ ambiguous labels from radiology reports and transform them into Gaussian distribution labels of different amplitudes. Furthermore, we propose multi-branch attention learning with ambiguous labels network (MAAL-Net). MAAL-Net consists of a hand object location module and an attention part extraction module to discover the informative regions of interest (ROIs) based only on image-level labels. Extensive experiments on both the RSNA dataset and the China Bone Age (CNBA) dataset demonstrate that our method achieves competitive results with the state-of-the-arts, and performs on par with experienced physicians in children's BAA tasks.
骨龄评估(BAA)是诊断儿童发育内分泌和代谢疾病的一种典型临床技术。现有的基于深度学习的自动 BAA 模型是在北美放射学会数据集(RSNA)上针对西方人群进行训练的。然而,由于东西方儿童在发育过程和 BAA 标准方面存在差异,这些模型不能应用于东方人群的骨龄预测。针对这一问题,本文收集了一个基于东亚人群的骨龄数据集进行模型训练。然而,获取具有准确标签的足够 X 射线图像既费力又困难。在本文中,我们利用放射学报告中的模糊标签,并将其转换为不同幅度的高斯分布标签。此外,我们提出了带有模糊标签的多分支注意力学习网络(MAAL-Net)。MAAL-Net 由一个手目标定位模块和一个注意力部分提取模块组成,仅基于图像级标签发现感兴趣区域(ROI)的信息。在 RSNA 数据集和中国骨龄(CNBA)数据集上的广泛实验表明,我们的方法在与现有技术的竞争中取得了有竞争力的结果,并且在儿童 BAA 任务中与经验丰富的医生表现相当。