Suppr超能文献

在警觉任务和静息状态下使用脑电图进行精神疲劳评估

Mental Fatigue Estimation Using EEG in a Vigilance Task and Resting States.

作者信息

Tian Sen, Wang Yijun, Dong Guoya, Pei Weihua, Chen Hongda

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1980-1983. doi: 10.1109/EMBC.2018.8512666.

Abstract

Mental fatigue induced by long time mental work can cause deterioration in task performance and increase the risk of accidents. Recently, electroencephalogram (EEG)-based monitoring of mental fatigue has received increasing attention in the field of brain-computer interfaces (BCI). This study aims to employ EEG signals to measure the mental fatigue level by estimating reaction time (RT) in a psychomotor vigilance task (PVT). In a 36-hour sleep deprivation experiment, EEG data from 18 subjects were recorded every four hours in nine blocks, each consisting of three tasks: a 6-minute PVT task and two 3-minute resting states (eyes closed and eyes open). The mean RT in the PVT task showed a generally increasing trend during the 36-hour awake period, reflecting the increase of fatigue over time. For each task, multiple EEG features were extracted and selected to better estimate RT using a multiple linear regression (MLR) method. The correlation between predicted RT and actual RT was evaluated using a leave-one-subject-out (LOSO) validation strategy. After parameter optimization, EEG data from the PVT task obtained a mean correlation coefficient of $0.81 \pm 0.16$ across all subjects. Resting-state EEG data showed lower correlations (eyes-closed: $0.65 \pm 0.20$, eyes-open: $0.50 \pm 0.30)$ partially due to the involvement of shorter data lengths. These results demonstrate the feasibility and robustness of the EEG-based fatigue monitoring method, which could be potential for applications in operational environments.

摘要

长时间脑力劳动引起的精神疲劳会导致任务表现恶化,并增加事故风险。最近,基于脑电图(EEG)的精神疲劳监测在脑机接口(BCI)领域受到了越来越多的关注。本研究旨在通过估计心理运动警觉任务(PVT)中的反应时间(RT),利用EEG信号来测量精神疲劳水平。在一项36小时睡眠剥夺实验中,每四小时记录18名受试者的EEG数据,共九个时间段,每个时间段包括三项任务:一项6分钟的PVT任务和两项3分钟的休息状态(闭眼和睁眼)。在36小时的清醒期内,PVT任务中的平均RT总体呈上升趋势,反映出疲劳程度随时间增加。对于每项任务,提取并选择了多个EEG特征,以使用多元线性回归(MLR)方法更好地估计RT。使用留一法(LOSO)验证策略评估预测RT与实际RT之间的相关性。经过参数优化后,PVT任务的EEG数据在所有受试者中的平均相关系数为0.81±0.16。静息状态EEG数据的相关性较低(闭眼:0.65±0.20,睁眼:0.50±0.30),部分原因是数据长度较短。这些结果证明了基于EEG的疲劳监测方法的可行性和稳健性,该方法在操作环境中具有潜在的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验