Suppr超能文献

课堂上数据驱动的自然计算心理生理学

Data-driven natural computational psychophysiology in class.

作者信息

Huang Yong, Huan Yuxiang, Zou Zhuo, Wang Yijun, Gao Xiaorong, Zheng Lirong

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515 China.

Guangdong Institute of Intelligence Science and Technology, Hengqin, 519031 China.

出版信息

Cogn Neurodyn. 2024 Dec;18(6):3477-3489. doi: 10.1007/s11571-024-10126-9. Epub 2024 Jun 4.

Abstract

The assessment of mental fatigue (MF) and attention span in educational and healthcare settings frequently relies on subjective scales or methods such as induced-task interruption tools. However, these approaches are deficient in real-time evaluation and dynamic definitions. To address this gap, this paper proposes a Continuous Quantitative Scale (CQS) that allows for the natural and real-time measurement of MF based on group-synchronized electroencephalogram (EEG) data. In this study, computational psychophysiology was used to measure MF scores during a realistic class. Our methodology continuously monitored participants' psychological states without interrupting their regular routines, providing an objective evaluation. By analyzing multi-subject brain-computer interface (mBCI) data with a collaborative computing approach, the group-synchronized data were obtained from 10 healthy participants to assess MF levels. Each participant wore an EEG headset for only 10 min of preparation before performing a sustained task for 80 min. Our findings indicate that a lecture duration of 18.9 min is most effective, while a duration of 43.1 min leads to heightened MF levels. By focusing on the group-level simultaneous data analysis, the effects of individual variability were mitigated and the efficiency of cognitive computing was improved. From the perspective of a neurocomputational measure, these results confirm previous research. The proposed CQS provides a reliable, objective, memory- and emotion-free approach to the assessment of MF and attention span. These findings have significant implications not only for education, but also for the study of group cognitive mechanisms and for improving the quality of mental healthcare.

摘要

在教育和医疗环境中,对精神疲劳(MF)和注意力持续时间的评估通常依赖于主观量表或方法,如诱导任务中断工具。然而,这些方法在实时评估和动态定义方面存在不足。为了填补这一空白,本文提出了一种连续定量量表(CQS),该量表能够基于群体同步脑电图(EEG)数据对MF进行自然和实时测量。在本研究中,运用计算心理生理学方法在实际课堂中测量MF分数。我们的方法在不干扰参与者日常活动的情况下持续监测他们的心理状态,从而提供客观评估。通过采用协作计算方法分析多主体脑机接口(mBCI)数据,从10名健康参与者那里获取群体同步数据以评估MF水平。每位参与者在佩戴EEG头戴设备进行80分钟的持续任务之前,只需进行10分钟的准备。我们的研究结果表明,18.9分钟的讲座时长最为有效,而43.1分钟的时长会导致MF水平升高。通过关注群体层面的同步数据分析,减轻了个体差异的影响,提高了认知计算的效率。从神经计算测量的角度来看,这些结果证实了先前的研究。所提出的CQS为评估MF和注意力持续时间提供了一种可靠、客观、无记忆和无情感的方法。这些发现不仅对教育具有重要意义,而且对群体认知机制的研究以及改善心理保健质量也具有重要意义。

相似文献

1
Data-driven natural computational psychophysiology in class.课堂上数据驱动的自然计算心理生理学
Cogn Neurodyn. 2024 Dec;18(6):3477-3489. doi: 10.1007/s11571-024-10126-9. Epub 2024 Jun 4.
6
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

4
Subjective memory measures: Metamemory questionnaires currently in use.主观记忆测量:目前使用的元记忆问卷。
Q J Exp Psychol (Hove). 2024 May;77(5):924-942. doi: 10.1177/17470218231183855. Epub 2023 Jul 3.
6
Improving the Reliability of Cognitive Task Measures: A Narrative Review.提高认知任务测量的可靠性:综述。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):789-797. doi: 10.1016/j.bpsc.2023.02.004. Epub 2023 Feb 24.
9
Fatigue Monitoring Through Wearables: A State-of-the-Art Review.通过可穿戴设备进行疲劳监测:最新技术综述
Front Physiol. 2021 Dec 15;12:790292. doi: 10.3389/fphys.2021.790292. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验