Suppr超能文献

使用八胞胎连体网络进行牙科全景X光片的骨质疏松分析。

Using Octuplet Siamese Network For Osteoporosis Analysis On Dental Panoramic Radiographs.

作者信息

Chu Peng, Bo Chunjuan, Liang Xin, Yang Jie, Megalooikonomou Vasileios, Yang Fan, Huang Bingyao, Li Xinyi, Ling Haibin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2579-2582. doi: 10.1109/EMBC.2018.8512755.

Abstract

Dental Panoramic radiography (DPR) image provides a potentially inexpensive source to evaluate bone density change through visual clue analysis on trabecular bone structure. However, dense overlapping of bone structures in DPR image and scarcity of labeled samples make learning of accurate mapping from DPR patches to osteoporosis condition challenging. In this paper, we propose a deep Octuplet Siamese Network (OSN) to learn and fuse discriminative features for osteoporosis condition prediction using multiple DRP patches. By exploring common features, OSN uses patches of eight locations together to train the shared feature extractor. Feature fusion for different location adopts both accumulation and concatenation with fully considering of patches' spatial symmetry. In our dedicated two-stage fine-tuning scheme, an augmented texture analysis dataset is employed to prevent overfitting in transferring weights learned on ImageNet to DPR dataset when using merely 108 samples. Leave-one-out test shows that our proposed OSN outperforms all other state of the art methods in osteoporosis category classification task.

摘要

口腔全景X线摄影(DPR)图像通过对小梁骨结构进行视觉线索分析,为评估骨密度变化提供了一种潜在的低成本来源。然而,DPR图像中骨结构的密集重叠以及标记样本的稀缺,使得学习从DPR图像块到骨质疏松症状况的准确映射具有挑战性。在本文中,我们提出了一种深度八联体暹罗网络(OSN),以使用多个DRP图像块学习和融合用于骨质疏松症状况预测的判别特征。通过探索共同特征,OSN一起使用八个位置的图像块来训练共享特征提取器。不同位置的特征融合采用累加和拼接的方式,同时充分考虑图像块的空间对称性。在我们专门的两阶段微调方案中,当仅使用108个样本时,采用增强的纹理分析数据集来防止在将在ImageNet上学习的权重转移到DPR数据集时出现过拟合。留一法测试表明,我们提出的OSN在骨质疏松症类别分类任务中优于所有其他现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验