Suppr超能文献

牙科全景X光片中用于骨质疏松症预筛查的小梁标志物检测

Detection of Trabecular Landmarks for Osteoporosis Prescreening in Dental Panoramic Radiographs.

作者信息

Ren Jiaxiang, Fan Heng, Yang Jie, Ling Haibin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2194-2197. doi: 10.1109/EMBC44109.2020.9175281.

Abstract

Dental panoramic radiography (DPR) images have recently attracted increasing attention in osteoporosis analysis because of their inner correlation. Many approaches leverage machine learning techniques (e.g., deep convolutional neural networks (CNNs)) to study DPR images of a patient to provide initial analysis of osteoporosis, which demonstrates promising results and significantly reduces financial cost. However, these methods heavily rely on the trabecula landmarks of DPR images that requires a large amount of manual annotations by dentist, and thus are limited in practical application. Addressing this issue, we propose to automatically detect trabecular landmarks in DPR images. In specific, we first apply CNNs-based detector for trabecular landmark detection and analyze its limitations. Using CNNs-based detection as a baseline, we then introduce a statistic shape model (SSM) for trabecular landmark detection by taking advantage of spatial distribution prior of trabecular landmarks in DPR images and their structural relations. In experiment on 108 images, our solution outperforms CNNs-based detector. Moreover, compared to CNN-based detectors, our method avoids the needs of vast training samples, which is more practical in application.

摘要

牙科全景X线摄影(DPR)图像因其内在相关性,近年来在骨质疏松症分析中受到越来越多的关注。许多方法利用机器学习技术(如深度卷积神经网络(CNN))来研究患者的DPR图像,以提供骨质疏松症的初步分析,取得了有前景的结果,并显著降低了经济成本。然而,这些方法严重依赖DPR图像的小梁标志点,这需要牙医进行大量的手动标注,因此在实际应用中受到限制。为了解决这个问题,我们建议自动检测DPR图像中的小梁标志点。具体来说,我们首先应用基于CNN的检测器进行小梁标志点检测,并分析其局限性。以基于CNN的检测为基线,我们利用DPR图像中小梁标志点的空间分布先验及其结构关系,引入统计形状模型(SSM)进行小梁标志点检测。在对108幅图像的实验中,我们的解决方案优于基于CNN的检测器。此外,与基于CNN的检测器相比,我们的方法避免了对大量训练样本的需求,在应用中更具实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验