Suppr超能文献

基于图最短路径和卷积神经网络的光学相干断层扫描(OCT)流体分割

OCT Fluid Segmentation using Graph Shortest Path and Convolutional Neural Network.

作者信息

Rashno Abdolreza, Koozekanani Dara D, Parhi Keshab K

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3426-3429. doi: 10.1109/EMBC.2018.8512998.

Abstract

Diagnosis and monitoring of retina diseases related to pathologies such as accumulated fluid can be performed using optical coherence tomography (OCT). OCT acquires a series of 2D slices (Bscans). This work presents a fully-automated method based on graph shortest path algorithms and convolutional neural network (CNN) to segment and detect three types of fluid including sub-retinal fluid (SRF), intra-retinal fluid (IRF) and pigment epithelium detachment (PED) in OCT Bscans of subjects with age-related macular degeneration (AMD) and retinal vein occlusion (RVO) or diabetic retinopathy. The proposed method achieves an average dice coefficient of 76.44%, 92.25% and 82.14% in Cirrus, Spectralis and Topcon datasets, respectively. The effectiveness of the proposed methods was also demonstrated in segmenting fluid in OCT images from the 2017 Retouch challenge.

摘要

可以使用光学相干断层扫描(OCT)对与诸如积液等病变相关的视网膜疾病进行诊断和监测。OCT获取一系列二维切片(B扫描)。这项工作提出了一种基于图最短路径算法和卷积神经网络(CNN)的全自动方法,用于在年龄相关性黄斑变性(AMD)、视网膜静脉阻塞(RVO)或糖尿病性视网膜病变患者的OCT B扫描中分割和检测三种类型的液体,包括视网膜下液(SRF)、视网膜内液(IRF)和色素上皮脱离(PED)。所提出的方法在Cirrus、Spectralis和Topcon数据集中分别实现了76.44%、92.25%和82.14%的平均骰子系数。所提出方法的有效性也在2017年Retouch挑战赛的OCT图像液体分割中得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验