Suppr超能文献

OCT 立方体中与年龄相关的黄斑变性液体积聚的全自动 3D 直观可视化。

Fully-Automatic 3D Intuitive Visualization of Age-Related Macular Degeneration Fluid Accumulations in OCT Cubes.

机构信息

Grupo VARPA, Instituto de investigación Biomédica de A Coruña (INIBIC), Xubias de Arriba, 84, A Coruña, 15006, Spain.

Centro de investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, A Coruña, 15071, Spain.

出版信息

J Digit Imaging. 2022 Oct;35(5):1271-1282. doi: 10.1007/s10278-022-00643-6. Epub 2022 May 5.

Abstract

Age-related macular degeneration is the leading cause of vision loss in developed countries, and wet-type AMD requires urgent treatment and rapid diagnosis because it causes rapid irreversible vision loss. Currently, AMD diagnosis is mainly carried out using images obtained by optical coherence tomography. This diagnostic process is performed by human clinicians, so human error may occur in some cases. Therefore, fully automatic methodologies are highly desirable adding a layer of robustness to the diagnosis. In this work, a novel computer-aided diagnosis and visualization methodology is proposed for the rapid identification and visualization of wet AMD. We adapted a convolutional neural network for segmentation of a similar domain of medical images to the problem of wet AMD segmentation, taking advantage of transfer learning, which allows us to work with and exploit a reduced number of samples. We generate a 3D intuitive visualization where the existence, position and severity of the fluid were represented in a clear and intuitive way to facilitate the analysis of the clinicians. The 3D visualization is robust and accurate, obtaining satisfactory 0.949 and 0.960 Dice coefficients in the different evaluated OCT cube configurations, allowing to quickly assess the presence and extension of the fluid associated to wet AMD.

摘要

年龄相关性黄斑变性是发达国家视力丧失的主要原因,湿性 AMD 需要紧急治疗和快速诊断,因为它会导致迅速不可逆转的视力丧失。目前,AMD 的诊断主要是通过光学相干断层扫描获得的图像进行的。这个诊断过程是由人类临床医生进行的,因此在某些情况下可能会出现人为错误。因此,非常需要全自动的方法来为诊断增加一层稳健性。在这项工作中,我们提出了一种新的计算机辅助诊断和可视化方法,用于快速识别和可视化湿性 AMD。我们采用了卷积神经网络来分割与湿性 AMD 分割问题类似的医学图像领域,利用迁移学习,这使我们可以使用和利用较少的样本。我们生成了一个直观的 3D 可视化,以清晰直观的方式表示液体的存在、位置和严重程度,以方便临床医生进行分析。3D 可视化是稳健和准确的,在不同评估的 OCT 立方体配置中获得了令人满意的 0.949 和 0.960 的 Dice 系数,能够快速评估与湿性 AMD 相关的液体的存在和扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/779d/9582110/368c01b59dfd/10278_2022_643_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验