IEEE J Biomed Health Inform. 2019 Jan;23(1):296-304. doi: 10.1109/JBHI.2018.2810379. Epub 2018 Feb 28.
Optical coherence tomography (OCT) is an imaging modality that is used extensively for ophthalmic diagnosis, near-histological visualization, and quantification of retinal abnormalities such as cysts, exudates, retinal layer disorganization, etc. Intra-retinal cysts (IRCs) occur in several macular disorders such as, diabetic macular edema, retinal vascular disorders, age-related macular degeneration, and inflammatory disorders. Automated segmentation of IRCs poses challenges owing to variations in the acquisition system scan intensities, speckle noise, and imaging artifacts. Several segmentation methods have been proposed in the literature for IRC segmentation on vendor-specific OCT images that lack generalizability across imaging systems. In this paper, we propose a fully convolutional network (FCN) model for vendor-independent IRC segmentation. The proposed method counteracts image noise variabilities and trains FCN models on OCT sub-images from the OPTIMA cyst segmentation challenge dataset (with four different vendor-specific images, namely, Cirrus, Nidek, Spectralis, and Topcon). Further, optimal data augmentation and model hyperparametrization are shown to prevent over-fitting for IRC area segmentation. The proposed method is evaluated on the test dataset with a recall/precision rate of 0.66/0.79 across imaging vendors. The Dice correlation coefficient of the proposed method outperforms that of the published algorithms in the OPTIMA cyst segmentation challenge with a Dice rate of 0.71 across the vendors.
光学相干断层扫描(OCT)是一种广泛用于眼科诊断、近组织学可视化以及视网膜异常(如囊肿、渗出物、视网膜层组织紊乱等)量化的成像方式。视网膜内囊肿(IRCs)发生在几种黄斑疾病中,如糖尿病性黄斑水肿、视网膜血管疾病、年龄相关性黄斑变性和炎症性疾病。由于采集系统扫描强度、散斑噪声和成像伪影的变化,IRCs 的自动分割具有挑战性。在文献中,已经提出了几种针对特定供应商的 OCT 图像上 IRC 分割的分割方法,这些方法缺乏对成像系统的泛化能力。在本文中,我们提出了一种用于供应商独立 IRC 分割的全卷积网络(FCN)模型。所提出的方法可以对抗图像噪声的可变性,并在 OPTIMA 囊肿分割挑战赛数据集的 OCT 子图像上训练 FCN 模型(具有四个不同的供应商特定图像,即 Cirrus、Nidek、Spectralis 和 Topcon)。此外,还展示了最佳的数据增强和模型超参数化方法,以防止 IRC 区域分割的过拟合。所提出的方法在测试数据集上进行了评估,在四个供应商中,IRC 面积分割的召回率/精度率为 0.66/0.79。在所提出的方法的 Dice 相关系数在 OPTIMA 囊肿分割挑战赛中优于已发表的算法,在四个供应商中,Dice 率为 0.71。