Ning Yunkun, Hu Shiwei, Nie Xiaofen, Liang Shengyun, Li Huiqi, Zhao Guoru
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4418-4422. doi: 10.1109/EMBC.2018.8513314.
This paper presents a smartphone application which has realized action recognition and fall detection. The application identifies the holding pattern of smartphone by the data of light sensor, distance sensor and accelerometer sensor, which reduce the impact of recognition resulting from the smartphone's different positions. And then the application uses data collected from the acceleration sensor, the direction angle sensor and the gyro sensor to distinguish fall from daily actions. The results of human motion recognition are uploaded to the server. For the purpose of real time, the network stability of the application is improved by the method of multi-layer detection based on heartbeat packet. Experiments prove that the way of improving network stability can reduce the rate of losing packet. The accuracy of action recognition achieves more than 90%.
本文介绍了一款实现了动作识别和跌倒检测的智能手机应用程序。该应用程序通过光传感器、距离传感器和加速度计传感器的数据来识别智能手机的握持模式,从而减少因智能手机不同位置而导致的识别影响。然后,该应用程序使用从加速度传感器、方向角度传感器和陀螺仪传感器收集的数据来区分跌倒和日常动作。人体运动识别的结果被上传到服务器。为了实现实时性,通过基于心跳包的多层检测方法提高了应用程序的网络稳定性。实验证明,提高网络稳定性的方法可以降低丢包率。动作识别的准确率达到了90%以上。