Suppr超能文献

基于智能手机的实时动作识别与跌倒检测

Real-time Action Recognition and Fall Detection Based on Smartphone.

作者信息

Ning Yunkun, Hu Shiwei, Nie Xiaofen, Liang Shengyun, Li Huiqi, Zhao Guoru

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4418-4422. doi: 10.1109/EMBC.2018.8513314.

Abstract

This paper presents a smartphone application which has realized action recognition and fall detection. The application identifies the holding pattern of smartphone by the data of light sensor, distance sensor and accelerometer sensor, which reduce the impact of recognition resulting from the smartphone's different positions. And then the application uses data collected from the acceleration sensor, the direction angle sensor and the gyro sensor to distinguish fall from daily actions. The results of human motion recognition are uploaded to the server. For the purpose of real time, the network stability of the application is improved by the method of multi-layer detection based on heartbeat packet. Experiments prove that the way of improving network stability can reduce the rate of losing packet. The accuracy of action recognition achieves more than 90%.

摘要

本文介绍了一款实现了动作识别和跌倒检测的智能手机应用程序。该应用程序通过光传感器、距离传感器和加速度计传感器的数据来识别智能手机的握持模式,从而减少因智能手机不同位置而导致的识别影响。然后,该应用程序使用从加速度传感器、方向角度传感器和陀螺仪传感器收集的数据来区分跌倒和日常动作。人体运动识别的结果被上传到服务器。为了实现实时性,通过基于心跳包的多层检测方法提高了应用程序的网络稳定性。实验证明,提高网络稳定性的方法可以降低丢包率。动作识别的准确率达到了90%以上。

相似文献

1
Real-time Action Recognition and Fall Detection Based on Smartphone.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4418-4422. doi: 10.1109/EMBC.2018.8513314.
3
[Design of Fall Detection System for Elderly People Based on MPU6050 Sensor].
Zhongguo Yi Liao Qi Xie Za Zhi. 2015 Sep;39(5):327-30.
4
A wearable action recognition system based on acceleration and attitude angles using real-time detection algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2385-2389. doi: 10.1109/EMBC.2017.8037336.
5
Fall-detection solution for mobile platforms using accelerometer and gyroscope data.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:3727-30. doi: 10.1109/EMBC.2015.7319203.
7
Towards automatic detection of falls using wireless sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1379-82. doi: 10.1109/IEMBS.2007.4352555.
9
Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization.
Med Eng Phys. 2006 Oct;28(8):842-9. doi: 10.1016/j.medengphy.2005.11.008. Epub 2006 Jan 6.
10
Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.
IEEE J Biomed Health Inform. 2018 Nov;22(6):1847-1853. doi: 10.1109/JBHI.2017.2782079. Epub 2017 Dec 11.

引用本文的文献

1
Fall Detection Algorithm Using Enhanced HRNet Combined with YOLO.
Sensors (Basel). 2025 Jul 2;25(13):4128. doi: 10.3390/s25134128.
2
Clinical human activity recognition based on a wearable patch of combined tri-axial ACC and ECG sensors.
Digit Health. 2024 Jan 4;10:20552076231223804. doi: 10.1177/20552076231223804. eCollection 2024 Jan-Dec.
3
Fall detection using accelerometer-based smartphones: Where do we go from here?
Front Public Health. 2022 Oct 17;10:996021. doi: 10.3389/fpubh.2022.996021. eCollection 2022.
4
Usability of a Fall Risk mHealth App for People With Multiple Sclerosis: Mixed Methods Study.
JMIR Hum Factors. 2021 Mar 22;8(1):e25604. doi: 10.2196/25604.
5
Innovations in research and clinical care using patient-generated health data.
CA Cancer J Clin. 2020 May;70(3):182-199. doi: 10.3322/caac.21608. Epub 2020 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验