Suppr超能文献

基于智能手机的在线跌倒检测系统,具有跌倒警报通知功能,并提供现实生活中跌倒的情境信息。

A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls.

机构信息

Max Nader Rehabilitation Technologies and Outcomes Lab, Shirley Ryan Ability Lab, IL, Chicago, USA.

Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.

出版信息

J Neuroeng Rehabil. 2021 Aug 10;18(1):124. doi: 10.1186/s12984-021-00918-z.

Abstract

BACKGROUND

Falls are a leading cause of accidental deaths and injuries worldwide. The risk of falling is especially high for individuals suffering from balance impairments. Retrospective surveys and studies of simulated falling in lab conditions are frequently used and are informative, but prospective information about real-life falls remains sparse. Such data are essential to address fall risks and develop fall detection and alert systems. Here we present the results of a prospective study investigating a proof-of-concept, smartphone-based, online system for fall detection and notification.

METHODS

The system uses the smartphone's accelerometer and gyroscope to monitor the participants' motion, and falls are detected using a regularized logistic regression. Data on falls and near-fall events (i.e., stumbles) is stored in a cloud server and fall-related variables are logged onto a web portal developed for data exploration, including the event time and weather, fall probability, and the faller's location and activity before the fall.

RESULTS

In total, 23 individuals with an elevated risk of falling carried the phones for 2070 days in which the model classified 14,904,000 events. The system detected 27 of the 37 falls that occurred (sensitivity = 73.0 %) and resulted in one false alarm every 46 days (specificity > 99.9 %, precision = 37.5 %). 42.2 % of the events falsely classified as falls were validated as stumbles.

CONCLUSIONS

The system's performance shows the potential of using smartphones for fall detection and notification in real-life. Apart from functioning as a practical fall monitoring instrument, this system may serve as a valuable research tool, enable future studies to scale their ability to capture fall-related data, and help researchers and clinicians to investigate real-falls.

摘要

背景

跌倒在全球范围内是导致意外死亡和受伤的主要原因。平衡受损的个体跌倒的风险特别高。回顾性调查和实验室条件下模拟跌倒的研究经常被使用,并且具有信息性,但关于现实生活中跌倒的前瞻性信息仍然很少。这些数据对于解决跌倒风险和开发跌倒检测和警报系统至关重要。在这里,我们展示了一项前瞻性研究的结果,该研究调查了一种基于智能手机的、概念验证的在线跌倒检测和通知系统。

方法

该系统使用智能手机的加速度计和陀螺仪来监测参与者的运动,并且使用正则化逻辑回归来检测跌倒。关于跌倒和接近跌倒事件(即绊倒)的数据存储在云服务器中,并记录到为数据探索开发的网络门户中,包括事件时间和天气、跌倒概率以及跌倒者在跌倒前的位置和活动。

结果

共有 23 名跌倒风险较高的个体携带手机 2070 天,模型对 14904000 个事件进行了分类。该系统检测到发生的 37 次跌倒中的 27 次(敏感性=73.0%),每 46 天产生一次假警报(特异性>99.9%,精度=37.5%)。被错误分类为跌倒的事件中有 42.2%被验证为绊倒。

结论

该系统的性能表明,在现实生活中使用智能手机进行跌倒检测和通知具有潜力。除了作为实用的跌倒监测仪器外,该系统还可以作为一种有价值的研究工具,使未来的研究能够扩大其捕获与跌倒相关的数据的能力,并帮助研究人员和临床医生研究真实的跌倒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abb/8353784/e97b119469cb/12984_2021_918_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验