Cheema Maninderpal Singh, Dutta Anirban
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4689-4692. doi: 10.1109/EMBC.2018.8513184.
This work presents a method for automatic independent component (IC) scalp map analysis of electroencephalogram during motor preparation in visuomotor tasks. The strength of this approach is the analysis of the IC scalp maps based on the apriori given mask. This uses an image processing approach, comparable to visual classification used by experts, to automate the selection of relevant ICs in visuomotor tasks. Thirty iterations of the Infomax ICA algorithm were used to test the reliability of the ICs. ICs above 95% quality index were used for IC scalp topography image analysis. Here, we used a linkage-clustering algorithm for IC clustering and gap statistic to estimate the number of clusters. After classifying the components with our approach, the labels were compared to those from well-known MARA ("Multiple Artifact Rejection Algorithm") - an open-source EEGLAB plug-in. It was found that 334 of the 568 labels were in-agreement. MARA labeled 81 out of the 177 source-related components, and 238 out of the 319 non-source-related components, as artifacts. Here, the strength of our approach lies in using an image-processing algorithm to identify the task-specific ICs whereas MARA focuses on the automatic classification of the artifactual ICs by combining stereotyped artifact-specific spatial and temporal features that depend on the electrode montage. After "artefactual" ICs are removed, task-specific ICs still remains to be identified from the remaining "good" ICs where our scalp topography image analysis approach can be applied. Our IC scalp topography image analysis is focused on task-specific IC selection based on an apriori mask, which is not limited to specific EEG features and/or electrode configurations for high-density EEG.
这项工作提出了一种在视觉运动任务的运动准备期间对脑电图进行自动独立成分(IC)头皮图分析的方法。该方法的优势在于基于先验给定掩码对IC头皮图进行分析。这采用了一种图像处理方法,类似于专家使用的视觉分类,以自动选择视觉运动任务中的相关IC。使用Infomax ICA算法进行30次迭代来测试IC的可靠性。质量指数高于95%的IC用于IC头皮地形图图像分析。在这里,我们使用连锁聚类算法进行IC聚类,并使用间隙统计来估计聚类数量。在用我们的方法对成分进行分类后,将标签与来自著名的MARA(“多伪迹去除算法”)——一个开源EEGLAB插件的标签进行比较。结果发现,568个标签中有334个是一致的。MARA将177个与源相关的成分中的81个以及319个与源无关的成分中的238个标记为伪迹。在这里,我们方法的优势在于使用图像处理算法来识别特定任务的IC,而MARA则侧重于通过结合依赖于电极蒙太奇的刻板伪迹特定空间和时间特征来自动分类伪迹IC。在去除“伪迹”IC后,仍需从剩余的“良好”IC中识别特定任务的IC,在此可以应用我们的头皮地形图图像分析方法。我们的IC头皮地形图图像分析专注于基于先验掩码的特定任务IC选择,这不限于高密度脑电图的特定脑电图特征和/或电极配置。