Swartz Center for Computational Neuroscience, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Pattern Recognition Laboratory, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Neuroimage. 2019 Sep;198:181-197. doi: 10.1016/j.neuroimage.2019.05.026. Epub 2019 May 16.
The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low-cost measure of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multiple, near-adjacent EEG scalp electrode channels are highly-correlated and combine signals from many different sources, biological and non-biological, independent component analysis (ICA) has been shown to isolate the various source generator processes underlying those recordings. Independent components (IC) found by ICA decomposition can be manually inspected, selected, and interpreted, but doing so requires both time and practice as ICs have no order or intrinsic interpretations and therefore require further study of their properties. Alternatively, sufficiently-accurate automated IC classifiers can be used to classify ICs into broad source categories, speeding the analysis of EEG studies with many subjects and enabling the use of ICA decomposition in near-real-time applications. While many such classifiers have been proposed recently, this work presents the ICLabel project comprised of (1) the ICLabel dataset containing spatiotemporal measures for over 200,000 ICs from more than 6000 EEG recordings and matching component labels for over 6000 of those ICs, all using common average reference, (2) the ICLabel website for collecting crowdsourced IC labels and educating EEG researchers and practitioners about IC interpretation, and (3) the automated ICLabel classifier, freely available for MATLAB. The ICLabel classifier improves upon existing methods in two ways: by improving the accuracy of the computed label estimates and by enhancing its computational efficiency. The classifier outperforms or performs comparably to the previous best publicly available automated IC component classification method for all measured IC categories while computing those labels ten times faster than that classifier as shown by a systematic comparison against other publicly available EEG IC classifiers.
脑电图(EEG)提供了一种非侵入性、限制最小且相对低成本的方法,可在高时间分辨率下测量中尺度脑动力学。虽然通过多个近邻 EEG 头皮电极通道并行记录的信号高度相关,并结合了来自许多不同来源(生物和非生物)的信号,但独立成分分析(ICA)已被证明可以分离出这些记录的各种源发生器过程。通过 ICA 分解找到的独立成分(IC)可以手动检查、选择和解释,但这需要时间和实践,因为 IC 没有顺序或内在解释,因此需要进一步研究其特性。或者,可以使用足够准确的自动 IC 分类器将 IC 分类为广泛的源类别,从而加快具有许多受试者的 EEG 研究的分析,并使 ICA 分解能够在近实时应用中使用。虽然最近已经提出了许多这样的分类器,但这项工作提出了 ICLabel 项目,包括 (1) 包含超过 200,000 个 IC 的时空度量的 ICLabel 数据集,以及超过 6000 个 IC 的匹配组件标签,所有这些都使用常见的平均参考,(2) 用于收集众包 IC 标签并教育 EEG 研究人员和从业者关于 IC 解释的 ICLabel 网站,以及 (3) 免费提供的用于 MATLAB 的自动 ICLabel 分类器。ICLabel 分类器通过两种方式改进了现有的方法:通过提高计算出的标签估计的准确性和通过提高其计算效率。该分类器在所有测量的 IC 类别中都优于或与以前最好的公开可用的自动 IC 组件分类方法相媲美,同时比该分类器快十倍地计算那些标签,如通过与其他公开可用的 EEG IC 分类器的系统比较所示。