Suppr超能文献

深度卷积神经网络在多通道脑电记录中无特征独立分量的自动分类中的应用。

Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings.

出版信息

IEEE Trans Biomed Eng. 2019 Aug;66(8):2372-2380. doi: 10.1109/TBME.2018.2889512. Epub 2018 Dec 24.

Abstract

OBJECTIVE

Interpretation of the electroencephalographic (EEG) and magnetoencephalographic (MEG) signals requires off-line artifacts removal. Since artifacts share frequencies with brain activity, filtering is insufficient. Blind source separation, mainly through independent component analysis (ICA), is the gold-standard procedure for the identification of artifacts in multi-dimensional recordings. However, a classification of brain and artifactual independent components (ICs) is still required. Since ICs exhibit recognizable patterns, classification is usually performed by experts' visual inspection. This procedure is time consuming and prone to errors. Automatic ICs classification has been explored, often through complex ICs features extraction prior to classification. Relying on deep-learning ability of self-extracting the features of interest, we investigated the capabilities of convolutional neural networks (CNNs) for off-line, automatic artifact identification through ICs without feature selection.

METHODS

A CNN was applied to spectrum and topography of a large dataset of few thousand samples of ICs obtained from multi-channel EEG and MEG recordings acquired during heterogeneous experimental settings and on different subjects. CNN performances, when applied to EEG, MEG, and combined EEG and MEG ICs, were explored and compared with state-of-the-art feature-based automatic classification.

RESULTS

Beyond state-of-the-art automatic classification accuracies were demonstrated through cross validation (92.4% EEG, 95.4% MEG, 95.6% EEG+MEG).

CONCLUSION

High CNN classification performances were achieved through heuristical selection of machinery hyperparameters and through the CNN self-selection of the features of interest.

SIGNIFICANCE

Considering the large data availability of multi-channel EEG and MEG recordings, CNNs may be suited for classification of ICs of multi-channel brain electrophysiological recordings.

摘要

目的

脑电图(EEG)和脑磁图(MEG)信号的解释需要离线去除伪迹。由于伪迹与脑活动共享频率,因此滤波是不够的。盲源分离主要通过独立成分分析(ICA),是多维记录中识别伪迹的金标准程序。然而,仍然需要对脑和人为独立成分(ICs)进行分类。由于 ICs 表现出可识别的模式,因此分类通常由专家进行视觉检查。这个过程既耗时又容易出错。已经探索了自动 IC 分类,通常是通过在分类之前对复杂的 ICs 特征进行提取。基于自我提取感兴趣特征的深度学习能力,我们研究了卷积神经网络(CNN)在没有特征选择的情况下通过 IC 离线自动识别伪迹的能力。

方法

将卷积神经网络应用于从多种脑电和脑磁记录中获得的数千个样本的 IC 频谱和地形图的大型数据集。研究了卷积神经网络在 EEG、MEG 和 EEG 和 MEG 混合 IC 上的性能,并与基于特征的最新自动分类方法进行了比较。

结果

通过交叉验证(EEG 为 92.4%,MEG 为 95.4%,EEG+MEG 为 95.6%)证明了超越最新自动分类精度的性能。

结论

通过对机器超参数的启发式选择和 CNN 对感兴趣特征的自我选择,实现了高的 CNN 分类性能。

意义

考虑到多通道脑电和脑磁记录的大量数据可用性,CNN 可能适合于多通道脑电生理记录的 IC 分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验