Scebba Gaetano, Tushaus Laura, Karlen Walter
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5672-5675. doi: 10.1109/EMBC.2018.8513501.
Thermal cameras enable non-contact estimation of the respiratory rate (RR). Accurate estimation of RR is highly dependent on the reliable detection of the region of interest (ROI), especially when using cameras with low pixel resolution. We present a novel approach for the automatic detection of the human nose ROI, based on facial landmark detection from an RGB camera that is fused with the thermal image after tracking. We evaluated the detection rate and spatial accuracy of the novel algorithm on recordings obtained from 16 subjects under challenging detection scenarios. Results show a high detection rate (median: 100%, 5-95 percentile: 92%- 100%) and very good spatial accuracy with an average root mean square error of 2 pixels in the detected ROI center when compared to manual labeling. Therefore, the implementation of a multispectral camera fusion algorithm is a valid strategy to improve the reliability of non-contact RR estimation with nearable devices featuring thermal cameras.
热成像相机能够对呼吸频率(RR)进行非接触式估计。RR的准确估计高度依赖于感兴趣区域(ROI)的可靠检测,尤其是在使用低像素分辨率相机时。我们提出了一种新颖的方法,用于自动检测人鼻ROI,该方法基于从RGB相机进行面部地标检测,并在跟踪后与热图像融合。我们在具有挑战性的检测场景下,对16名受试者的记录评估了该新算法的检测率和空间准确性。结果显示出高检测率(中位数:100%,5-95百分位数:92%-100%),并且与手动标注相比,在检测到的ROI中心平均均方根误差为2像素,具有非常好的空间准确性。因此,实施多光谱相机融合算法是一种有效的策略,可提高使用配备热成像相机的近距设备进行非接触式RR估计的可靠性。