Suppr超能文献

多光谱视频融合在非接触式呼吸频率和呼吸暂停监测中的应用。

Multispectral Video Fusion for Non-Contact Monitoring of Respiratory Rate and Apnea.

出版信息

IEEE Trans Biomed Eng. 2021 Jan;68(1):350-359. doi: 10.1109/TBME.2020.2993649. Epub 2020 Dec 21.

Abstract

Continuous monitoring of respiratory activity is desirable in many clinical applications to detect respiratory events. Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras. However, current technologies are not sufficiently robust to be used in clinical applications. For example, they fail to estimate an accurate respiratory rate (RR) during apnea. We present a novel algorithm based on multispectral data fusion that aims at estimating RR also during apnea. The algorithm independently addresses the RR estimation and apnea detection tasks. Respiratory information is extracted from multiple sources and fed into an RR estimator and an apnea detector whose results are fused into a final respiratory activity estimation. We evaluated the system retrospectively using data from 30 healthy adults who performed diverse controlled breathing tasks while lying supine in a dark room and reproduced central and obstructive apneic events. Combining multiple respiratory information from multispectral cameras improved the root mean square error (RMSE) accuracy of the RR estimation from up to 4.64 monospectral data down to 1.60 breaths/min. The median F1 scores for classifying obstructive (0.75 to 0.86) and central apnea (0.75 to 0.93) also improved. Furthermore, the independent consideration of apnea detection led to a more robust system (RMSE of 4.44 vs. 7.96 breaths/min). Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications.

摘要

连续监测呼吸活动在许多临床应用中是可取的,以检测呼吸事件。非接触式呼吸监测可以使用近红外和远红外光谱摄像机来实现。然而,目前的技术还不够强大,无法在临床应用中使用。例如,它们在呼吸暂停期间无法估计准确的呼吸率(RR)。我们提出了一种基于多光谱数据融合的新算法,旨在在呼吸暂停期间估计 RR。该算法独立地解决 RR 估计和呼吸暂停检测任务。从多个来源提取呼吸信息,并将其输入 RR 估计器和呼吸暂停检测器,其结果融合到最终的呼吸活动估计中。我们使用 30 名健康成年人在黑暗房间中仰卧进行各种受控呼吸任务时的数据,对系统进行了回顾性评估,并重现了中枢性和阻塞性呼吸暂停事件。从多光谱摄像机中结合多个呼吸信息,将 RR 估计的均方根误差(RMSE)精度从最高可达 4.64 单光谱数据提高到 1.60 次/分钟。分类阻塞性(0.75 至 0.86)和中枢性呼吸暂停(0.75 至 0.93)的中位数 F1 评分也有所提高。此外,独立考虑呼吸暂停检测导致系统更加稳健(RMSE 为 4.44 与 7.96 次/分钟)。我们的发现可能代表着朝着在医疗应用中使用摄像机进行生命体征监测迈出了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验