Suppr超能文献

基于小波变换和人工神经网络的短单导联心电图记录中的房颤检测

Atrial Fibrillation Detection in Short Single Lead ECG Recordings Using Wavelet Transform and Artificial Neural Networks.

作者信息

Hernandez Fabio, Mendez Dilio, Amado Lusvin, Altuve Miguel

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5982-5985. doi: 10.1109/EMBC.2018.8513562.

Abstract

Atrial fibrillation (AF) is a common health issue, not only in developed countries but also in developing ones. AF can lead to strokes, heart failures, and even death if it is not diagnosed and treated on time, therefore automatic detection of AF is an urgent need, particularly using Internet- connected devices that can alert healthcare services. Detection of AF typically involves the analysis of electrocardiogram (ECG) recordings, where P-waves that characterize the atrial activity are substituted with f-waves of variable amplitude and duration. In this paper, we used the discrete wavelet transform to decompose the ECG signal into detail and approximation coefficients with different time-frequency resolutions. Features extracted from ECG signals, RR interval time series and detail and approximation coefficients were used as inputs to an artificial neural network trained to identify four classes of heart rhythms: normal sinus rhythm (NSR), AF, other rhythms (OR) and noisy signals (NS). By performing a Monte Carlo 10- fold cross-validation of 10 iterations approach, average micro F scores of 83.64%, 61.61%, 56.88% and 53.88% to classify NSR, AF, OR and NS respectively, and average macro F of 64.00% were obtained on the publicly available training set of PhysioNet/Computing in Cardiology Challenge 2017. In addition, in a one-vs.-the-rest strategy, i.e., AF-vs-the-rest, averages sensitivity and specificity of 95.70% and 72.39% respectively were achieved to classify AF recordings.

摘要

心房颤动(AF)是一个常见的健康问题,不仅在发达国家如此,在发展中国家也是如此。如果不及时诊断和治疗,AF可能导致中风、心力衰竭甚至死亡,因此自动检测AF迫在眉睫,特别是使用能够提醒医疗服务机构的联网设备。AF的检测通常涉及对心电图(ECG)记录的分析,其中表征心房活动的P波被具有可变幅度和持续时间的f波所取代。在本文中,我们使用离散小波变换将ECG信号分解为具有不同时频分辨率的细节系数和近似系数。从ECG信号、RR间期时间序列以及细节系数和近似系数中提取的特征被用作人工神经网络的输入,该网络经过训练以识别四类心律:正常窦性心律(NSR)、AF、其他心律(OR)和噪声信号(NS)。通过对10次迭代的蒙特卡罗10折交叉验证方法,在PhysioNet/Computing in Cardiology Challenge 2017的公开可用训练集上,分别对NSR、AF、OR和NS进行分类时,平均微F分数分别为83.64%、61.61%、56.88%和53.88%,平均宏F为64.00%。此外,在一对一其余策略(即AF与其余类别对比)中,对AF记录进行分类时,平均灵敏度和特异性分别达到了95.70%和72.39%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验